Beame, Cook and Hoover were the first to exhibit a log-depth, polynomial size circuit family for integer division. However, the family was not logspace-uniform. In this paper we describe log-depth, polynomial size, logspace-uniform, i.e., circuit family for integer division. In particular, by a well-known result this shows that division is in logspace. We also refine the method of the paper to show that division is in dlogtime-uniform .
Keywords: parallel complexity, NC, integer division, uniformity
@article{ITA_2001__35_3_259_0,
author = {Chiu, Andrew and Davida, George and Litow, Bruce},
title = {Division in logspace-uniform $\mbox{NC}^1$},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {259--275},
year = {2001},
publisher = {EDP Sciences},
volume = {35},
number = {3},
mrnumber = {1869217},
zbl = {1014.68062},
language = {en},
url = {https://www.numdam.org/item/ITA_2001__35_3_259_0/}
}
TY - JOUR
AU - Chiu, Andrew
AU - Davida, George
AU - Litow, Bruce
TI - Division in logspace-uniform $\mbox{NC}^1$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2001
SP - 259
EP - 275
VL - 35
IS - 3
PB - EDP Sciences
UR - https://www.numdam.org/item/ITA_2001__35_3_259_0/
LA - en
ID - ITA_2001__35_3_259_0
ER -
%0 Journal Article
%A Chiu, Andrew
%A Davida, George
%A Litow, Bruce
%T Division in logspace-uniform $\mbox{NC}^1$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2001
%P 259-275
%V 35
%N 3
%I EDP Sciences
%U https://www.numdam.org/item/ITA_2001__35_3_259_0/
%G en
%F ITA_2001__35_3_259_0
Chiu, Andrew; Davida, George; Litow, Bruce. Division in logspace-uniform $\mbox{NC}^1$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 3, pp. 259-275. https://www.numdam.org/item/ITA_2001__35_3_259_0/
[1] , and, On , , and arithmetic circuits. J. Comput. System Sci. 60 (2000) 395-421. | Zbl | MR
[2] and, Uniform circuits for division: Consequences and problems (2000) allender@cs.rutgers.edu, barring@cs.umass.edu
[3] , and, On uniformity within . J. Comput. System Sci. 41 (1990) 274-306. | Zbl | MR
[4] , and, Log depth circuits for division and related problems. SIAM J. Comput. 15 (1986) 994-1003. | Zbl | MR
[5] , and, Counting problems and algebraic formal power series in noncommuting variables. Inform. Process. Lett. 34 (1990) 117-121. | Zbl | MR
[6] , On relating time and space to size and depth. SIAM J. Comput. 6 (1977) 733-744. | Zbl | MR
[7] , A taxonomy of problems with fast parallel algorithms. Inform. and Control 64 (1985) 2-22. | Zbl | MR
[8] and, Fast parallel arithmetic via modular representation. SIAM J. Comput. 20 (1991) 756-765. | Zbl | MR
[9] , Division is in uniform . Comp. Sci., U. Mass. Amherst (2000). | MR
[10] and, Integer division in residue number systems. IEEE Trans. Comput. 44 (1995) 983-989. | Zbl | MR
[11] , Descriptive Complexity. Springer-Verlag (1999). | Zbl | MR
[12] , The Art of Computer Programming, Vol. 2. Addison-Wesley (1969). | Zbl | MR
[13] , and, A complexity theory of efficient parallel algorithms. Theoret. Comput. Sci. 71 (1990) 95-132. | Zbl | MR
[14] , Computing context-free grammar generating series. Inform. and Comput. (in press). | Zbl
[15] , Space-efficient deterministic simulation of probabilistic automata. SIAM J. Comput. 27 (1998) 448-465. | Zbl | MR
[16] , Logarithmic depth circuits for algebraic functions. SIAM J. Comput. 15 (1986) 231-242. | Zbl | MR
[17] , On uniform circuit complexity. J. Comput. System Sci. 22 (1981) 365-383. | Zbl | MR
[18] and, Residue Arithmetic and its Application to Computer Technology. McGraw-Hill (1968). | Zbl
[19] , Introduction to Circuit Complexity. Springer-Verlag (1999). | Zbl | MR
[20] , The Complexity of Boolean Functions. Wiley-Teubner (1987). | Zbl | MR






