
INFORMATIQUE THÉORIQUE ET APPLICATIONS

M. HUCHARD

H. DICKY

H. LEBLANC
Galois lattice as a framework to specify building
class hierarchies algorithms
Informatique théorique et applications, tome 34, no 6 (2000),
p. 521-548
<http://www.numdam.org/item?id=ITA_2000__34_6_521_0>

© AFCET, 2000, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_2000__34_6_521_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 34 (2000) 521-548

GALOIS LATTICE AS A FRAMEWORK TO SPECIFY
BUILDING CLASS HIERARCHIES ALGORITHMS *

M. HUCHARD1, H. DlCKY1 AND H. LEBLANC1

Abstract. In the context of object-oriented Systems, algorithms for
building class hiérarchies are currently receiving much attention. We
present hère a characterization of several global algorithms. A global
algorithm is one which starts with only the set of classes (provided with
all their properties) and directly builds the hierarchy. The algorithms
scrutinized were developped each in a different framework. In this sur-
vey, they are explained in a single framework, which takes advantage of
a substructure of the Galois lattice associated with the binary relation
mapping the classes to their properties. Their characterization allows
to figure the results of the algorithms without running them in simple
cases. This study once again highlights the Galois lattice as a main
and intuitive model for class hiérarchies.

Mathematics Subject Classification. 06Al 5.

1. INTRODUCTION

Building a hierarchy of classes is an important step in object-oriented develop-
ment. These hiérarchies must be easily maintained and adapted to new require-
ments, while their components must be widely reusable. The level of reuse is
closely related to a clear organization of components as well as to the émergence
of components at different abstraction leyels. These qualities should be obtained
through systematic construction and organization of the classes. The émergence
of abstractions (superclasses) is the result of an intrisically complex computation.
Because it is based on the factorization of common features, this task requires
an examination of common features for all possible class subsets, which are 2n,

Keywords and phrases: Object-oriented Systems, class hierarchy, Galois lattice, class hierarchy
construction algorithms.

* This work is supported by France Télécom R&D, contract 971B602.
1 LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France; e-mail: {name}@lirmm.fr

© EDP Sciences 2001

522 M. HUCHARD, H. DICKY AND H. LEBLANC

where n is the number of classes. This complexity is fortunately reduced in nu-
merous cases where classes are partitionned into obviously unrelated sets.

These considérations have given rise to the development of methods to assist
designers, and to provide them with heuristics [12] or algorithms for construct ing
and modifying class hiérarchies. Concerning algorithms, some are incrémental, and
add classes one after another to an already existing hierarchy. By contrast, global
algorithms start with a binary relation own-property mapping the classes to their
properties, and produce a class hierarchy, that is, a set of classes possibly larger
than the input class set, and a partial order on this set. Due to the similarity of
some of the proposed algorithms, a précise characterization in a unifying framework
is necessary to specify their respective results.

Galois lattice theory will be used as the unifying framework allowing to under-
stand and compare the results of the algorithms. As we will show, the studied
global algorithms build a particular sub-order of the Galois lattice associated with
the own-property relation, or a structure close to that sub-order. To specify these
algorithms, we will compare them with a simple Galois sub-hierarchy construction
scheme. The importance for hierarchy construction of the Galois lattice and its
special sub-order was firstly highlighted by [7] and was also used in [6,9] as the
underlying structure for an incrémental algorithm (which adds one class to a class
hierarchy). Galois lattices (or concept lattices [16]) have many applications in
domains such as knowledge représentation, machine learning (conceptual cluster-
ing), classification, software engineering, and more recently data mining. In [8],
the main applications are presented.

The paper is organized as follows. Section 2 shows how different are the results
of the algorithms upon an actual example. Section 3 describes the theoretical
framework. The Galois lattice associated with a binary relation is defined along
with some simplifications, as proposed in [7,9]. These simplifications lead to the
définition of the Galois sub-hierarchy, which is a specified suborder of the Galois
lattice. In Section 4, a Galois sub-hierarchy construction scheme is given. It does
not constitute an efficient algorithm, but it is very useful as a tool to understand
the algorithms we study. Then four different algorithms are characterized: the
algorithm of Chen et ai [2] in Section 5, the algorithm of Moore et ai [14] in
Section 6, the algorithm of Cook [4] in Section 7 and finally, an algorithm of
Mineau et al [13] (proposed in the framework of conceptual graphs) in Section 8.
In Section 9, we summarize and compare the different results, then we conclude
with the advantages and drawbacks of using the Galois lattice and sub-hierarchy
as models of class hiérarchies.

2. ILLUSTRATING THE DIFFERENCES BETWEEN CONSTRUCTED
HIERARCHIES

We motivate our study with an example borrowed from C++ [15]. It shows
both the need of algorithms to build or improve class or type hiérarchies, and

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 523

ios_base
widthO

ioso
fiUO

ïstringstreamo
str() ostnngstreamo

str()

ifstreamo
open()
close()

ofstreamo
open()
ctose()

stringstreamo
str()

fstreamo
open()
close()

FIGURE 1. The main éléments of the C++ stream hierarchy.

the différences between hiérarchies produced by the main construction algorithms
proposed in the literature.

The hierarchy we will examine is a simplified2 version of the stream hierarchy
(see Fig. 1). Class names have been shorten: préfixes basic- have been removed,
and template parameters are omitted. Besides, we focus on the available opéra-
tions, and not on their implementation. The resulting structure may be considered
as the hierarchy of the C++ stream types.

At first sight, this stream hierarchy has a good shape, as it présents a central
diamond representing the basic kinds of streams regarding input/output features,
and further specializations associated to different data structures (file and string).
If we consider this hierarchy more closely, however, it is not so well organized.
First, several abstractions, like "file" or "string" are missing. They are actu-
ally spread over several types, as of stream, ifstream, f stream, according the
input/output opérations. As a conséquence, opérations like "open", "close", or
"str" are declared in more than one type. In some C++ versions, they are even
implemented almost the same way. Second, several specialization links are miss-
ing: "input/output file" (f stream) might appear as a specialization of both "input
file" (ifstream) and "output file" (ofstream) but the hierarchy does not contain
this information.

All the algorithms we study rearrange such hiérarchies, at least to propose
designers other possible solutions. We will consider five solutions to our example,
four of them are built by known algorithms, the fifth is the référence used to
compare them and has, from our point of view, the most logical organization.

2 Note however that the simplification does not change the main semantics of the hierarchy.

524 M, HUCHARD, H. DICKY AND H. LEBLANC

own-property
ios base
ioso
istreamo
istringstreamo
ifstxeamo
ostreamo
ostringstreamo
ofstreamo
lostreamo
stringstreamo
fstreamo

width()

X

X

X

X

X

X

X

X

X

X

X

•fiUO

X

X

X

X

X

X

X

X

X

X

get()

X

X

X

X

X

X

put()

X

X

X

X

X

X

str()

X

X

X

open()

X

X

X

close()

X

X

X

FIGURE 2. The C++ stream hierarchy mapping.

width()

IOSO

MO

stringstream_baseo
str()

istreamo
get()

ostreamo
put()

fstream_baseo
openQ
closeO

FIGURE 3. The stream hierarchy re-built with the algorithm of
Mineau et ai

The input of these algorithms is a binary relation mapping the classes to their
properties (Fig. 2).

The algorithm of [13] essentially factorizes features. We believe it is meant for
objects which are not comparable. This is why, applied to our problem where
types are comparable, some types are missing (see Fig. 3). This algorithm is
nevertheless a very good ba3is beçause. if we apply both the algorithm and the
"dual" (type-oriented instead of property-oriented) the whole référence structure
is obtained, as we will see below.

The algorithms [2] and [4] intend adding the missing types, but they do not
compare these new types together (Fig. 4). As a resuit, the factorization of prop-
erties is correct, but specialization links are missing, even more than in the orig-
inal C++ hierarchy, for instance between f stream and iostream, and the whole
scheme becomes complicated.

Another algorithm, proposed by [14] in a prototype-based language framework,
furthermore assumes that input classes have to appear as leaves in the output
hierarchy. Apart of that, its resuit is the same as in [2] and in [4] (in Fig. 5,
which shows the output hierarchy, the classes added because of this additional
assumption are in bold face).

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHME 525

ios_base
widthQ

ioso
WO

stringstream_base<>
str()

fstream_base<>
open()
close()

istringstreamo\ / ^^ostr ingstreamo

stringstreamo

ifstreamo

fstreamo

ïostreamo

FIGURE 4. The stream hierarchy re-built with the algorithms of
Chen et ai and Cook.

ios_base
widthQ

stringstream_base<> istreaïno
str() *

ostreamo fstream_baseo
openO
close()

istringstream<>\ / ^^ostr ingstreamo

stringstreamo

ifstreamo

fstreamo

iostreamo

FIGURE 5. The stream hierarchy re-built with the algorithm of
Moore et al.

The structure we will take as a référence is shown Figure 6. Compared with
others, it contains all the specialization links one can expect; it has a very clear
construction principle: a copy of the central diamond is made following the two
kinds of data structure (file and string).

The respective advantages of the different output hiérarchies may be discussed,
but at least, this introductory example demonstrates that a characterization of
these algorithms is essential. Next section gives the theoretical framework we
think suitable for that.

526 M. HUCHARD, H. DICKY AND H. LEBLANC

ios_base
width()

istreamo
get()

„. & X. ^ N. . s • " X > . fstream_base<>

stnngstream_base<> ^
strf) ''

istringstreamo ostringstreamo^-' "x-v. ifstreamo ofstreamo

stringstream<> - fstreamo

FIGURE 6. The stream hierarchy built from the Gaiois sub-hierarchy.

3. GALOIS LATTICES AND SUB-HIERARCHIES

This section introduces some useful définitions about Galois lattices and sub-
hierarchies. For more details, the reader can refer to [1,5,8]. Proofs are given for
properties which are not well known in the field.

A Galois lattice essentially présents and organizes ail non-empty intersections
between property sets of given objects (here classes, in the sense of object program-
ming). In that structure, the properties shared are clustered into "concepts" which
describe objects. Properties are maximally factorized, wit h a minimal number of
concepts introduced by the factorization.

In the next two subsections we first define the Galois lattice structure associated
to a binary relation, and then the simplifications that lead to the Galois sub-
hierarchy structure.

3.1. GALOIS LATTICES

Let E and F be two finite sets and let R be a binary relation between E and F.
In our context, E is the set of classes, and F the set of properties. (x,y) G 1Z
for x € E and.-y G F means x owns y. Figure 7 shows the binary relation used to
illustrate the following définitions.

Définition 3.1. The construction is based on two fundamental mappings ƒ and
g defined below.

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 527

Properties

Classes

1

2

3

4

5

a
X

X

X

X

b
X

c

X

X

X

d

X

e

X

f

X

X

FIGURE 7. Relation Rl between E = 1 . . . 5 and F = a... ƒ.

g:p(F)->P{E)i

For X Ç E, f{X) is the set of properties owned by all classes of X. For instance,
with X = {2,3,4}, f(X) is the set of properties shared by 2, 3 and 4, and more
exactly {c}. Symmetrically, for 7 Ç F , g (Y) is the set of classes owning all the
properties of Y. For instance, if Y = {a^c}, g(Y) is the set of classes that own
both a and c, that is g (Y) = {3,4}. These mappings play a very symmetrical rôle,
as shown below.

Définition 3.2. Let (A,<A) and (B,<B) be ordered sets, and let f\ : A —• B
and ƒ2 : -B —> A be mappings. The pair (ƒ1, ƒ2) is a Galois connection when for
ail a G A and b G B, a <A ƒ2 (b) if and only if b <B /i(a).

Proposition 3.3. Lei ƒ and g as in Définition 3.1. (f, g) is a Galois connection
between (V(E),Q and (P(F),Ç), that is, \/X G P(E), Y G P{F), X Ç g(Y) if
andonlyifYÇf(X).

Furthermore, ƒ and g have the obvious following property.

Proposition 3.4. ƒ and g are decreasing mappings.

The composition of ƒ and g defines two operators, fis = gof and hp = fog.
HE(X) is the set of classes that own all the properties that are owned by all the
classes of X. Symmetrically hp(Y) is the set of properties that are owned by ail
the classes that own all the properties of Y.

Proposition 3.5. HE = gof and HF = fog are closure operators, that is (for
instance for HE)'

1. (increasing) XUX2 C E, (X± Ç X2) =* (M*i) £ M ^)) /
2. (extensive) X Ç E => X Ç hE(X);
3. (idempotent) I Ç E ^ hE(hE(X)) = hE{X).

Définition 3.6. The sets X Ç E (resp. Y <Z F) such that hE(X) = X (resp.
HF(Y) = y) are said to be closed with respect to HE (resp. to hp).

For instance, {a^c.f} is a closed set, while {a,c} is not. We have indeed
g({a, c}) - {3,4}, and f {g ({a, c})) = ƒ ({3; 4}) - {a, c, ƒ}.

These closed sets may be organized into a lattice. We recall first the définitions
of infimum, supremum, and lattice [5].

528 M. HUCHARD, H. DICKY AND H. LEBLANC

Définition 3.7. Let P an ordered set, and let S <Z P.
When the set {x G P | Vs G S, s > x} has a largest element, this element is

called the infimum of 5.
When the set {x G P | Vs e S, s < x} has a least element, this element is called

the supremum of 5.
If for all x,y G P, {x,y} admits an infimum and a supremum, denoted respec-

tively by x A y and y V x, then P is a lattice.

Définition 3.8. The set of sets closed with respect to hs, denoted by CE (resp. CF
for HF)<> ordered by the set inclusion C (resp. by Z>) is a lattice. The infimum and
supremum operators are as follows, where Xx, X2 are closed sets of KE (resp. Yi,
Y2 closed sets of hp) -

Xx A X2 = (Xi H X2) (resp. yx A Y2 = hF{Y1 U y2));
Y1 v y 2 = yx ny2).

Figure 8 shows CE on the left, and CF in the center. Let us look at some examples
of infimum and supremum computations.

For Xx = {1} and X2 = {3,4}, we have Xt V X2 = hE(X1UX2) = {1,3,4,5}
which shows that {1,3,4} is not a closed set. With X\ = {3} and X2 = {4}, we
have Xx V X2 = hE(X1 U X2) = {3,4} which shows that {3,4} is a closed set.
With Xx = {1,3, 4, 5} and X2 = {2,3,4}, we have X1AX2=XlDX2 = {3,4}.

CE and CF are isomorphic (there is a bijective map between them which pre-
serve the infimum and supremum), and this property leads to the Galois lattice
définition.

Définition 3.9. A concept is a pair (X,y), with X e CE, and Y G Cp-> and
Y = f{X) (or équivalents X = g(Y)).

Définition 3.10. The Galois lattice is the set C of concepts, provided with the
order <c defined by (Xx,Yx) <c (X2,Y2) iff Xx C X2 (which is equivalent
to 72 C Fi). Infimum and supremum operators consist in applying to left and
right members of the pairs the infimum and supremum operators defined for CE
(resp.

Figure 8 (right) shows the Galois lattice for the example described in Figure 7.

3.2. GALOIS SUB-HIERARCHY

In [8], several lattice simplifications based upon the closed sets (Def. 3.6) are
proposed. The size of the whole lattice can, in the worst case, be exponential with
respect to the number of classes and the number of properties, so it is judicious to
reduce the set of concepts.

Moreover, redundancy in the structure itself can be observed between the lattice
node labels (the pairs of closed sets) and the order [7]. A property (resp. a class)
belonging to a node belongs to all the nodes below (resp. above). The simplication
we will use considers that properties and classes are unnecessarily repeated in each
concept along lattice paths, and need be quoted only in their introducing node.

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 529

{12345} U {12345},{}

{1345},{a} {234}, {c

{4},{acef}

(Uabcdef}

FIGURE 8. Lattices £E, £F and C.

Due to this redundancy, two symmetrical simplifications are made on pairs of
closed sets in the lattice. The simplification concerning properties is presented in
more detail, being the more intuitive from an object-oriented point of view.

Définition 3.11. Let (X, Y) be a vertex of £, the vertex simplified according to
properties is denoted by (X, Y') where Y' = Y \ inherited(Y) with inherited(Y) =
{y E Y s.t. 3Y2 e£F,ye Y2 and Y2 C Y}.

Properties removed this way from Y are inherited from vertices higher than (X, Y)
in the lattice (according to the order <c).

This simphfication of a concept also applies to its right part. For a property
closed set Y G CF, the simplification leads to Y' = Y \ inherited(Y).

Before giving some properties of this simphfication, let us give a property useful
in later proofs.

Proposition 3.12. For any I Ç E ; / P O *s a closed set w.r.t hp.

Proof. From Proposition 3.5.2. {hF is extensive), it follows that f(X) Ç hp(f(X)).
Symmetrically, Proposition 3.5.2. [h E is extensive) implies X Ç HB(X), and the
fact that ƒ is decreasing yields 'f(X) 2 f(fiE(X)). Remarking that f[fiE{X)) =
f(g{f(X))) = hF{f(X)) concludes the proof. •

Proposition 3.13. If (X,Yf) results from a simplification according to properties
applied to (X,Y), then for all y, y eYf if and only if g({y}) = X.

Proof. Firstly, it is shown that y G Y' implies g ({y}) — X.
Vy G Y, g ({y}) 2 g (Y) since g is decreasing. Now Y = ƒ (X) according to the

closed set définition, g(Y) = g(f(X)) = X since X is a closed set of KE- AS a
conséquence, g ({y}) 2 X, for ail y e Y.

Suppose now that g {{y}) ^ X with y e Y'. g({y}) is a closed set (Prop. 3.12).
There is thus a vertex (X",Y") in C such that X" = g({y}). By définition,
(X", Y") >c (X, Y) since X" D X. As y e Y", y is inherited and does not belong
to Y' according to the simplification définition. Contradiction.

530 M. HUCHARD, H. DICKY AND H. LEBLANC

Conversely, if g({y}) = X, y appears in ail classes of X and only in these classes,
then y G f(X) = Y according to the définition of the Galois connection; moreover,
as for every vertex (X", Y") higher in the lattice, we have X" D X, there is in X"
at least one class that does not own y, so y can not belong to f{Xf/): y can not
be inherited. D

Proposition 3.14. If(X,Yf) is the resuit of the simplification according to prop-
erties applied to (X, Y); then for any y G Y', (X, Y) is the highest vertex in the
lattice where y appears. y is said "declared" by the vertex (X,y).

Proof According to the définition of the simplification, there is no vertex higher in
the lattice that owns y in its simplified right part. By Galois lattice construction,
a closed set corresponds to only one vertex, so (using Prop. 3.13) there can not be
two vertices that déclare y. D

A simplification according to classes can be defined symmetrically.

Définition 3.15. Let (X, Y) be a pair of closed sets, the simplification according
to classes leads to (X', Y) where X' = X \ subclass(X), such that subclass(X) =
{x G X s.t. 3X2 G CE, x G X2 and X2 C X}.

A class removed from X this way, appears in the left part of one vertex lower
than (X, y) (considering <c).

A simplified class closed set X' for a class closed set X G CE is X' = X \
subclass(X).

Proposition 3.16. For any Y Ç F, g(Y) is a closed set.

Proposition 3.17. If (X', Y) is the pair of closed sets (X, Y) simplified according
to classes, for any x, x G X' if and only if f({x}) — Y.

Proposition 3.18. If (X', Y) is the pair of closed sets (X, Y) simplified according
to classes, Mx G Xf, (X, Y) is the lower vertex where x appears. x is said "defined
by"(X,Y).

Définition 3.19. Vertices whose simplified form, according to class and property
simplification, is (0,0) are called "empty simplified éléments".

Proposition 3.20. If (X, Y) is an empty simplified element, then:
• Vx G X, there is a pair (Xi,Yi) G C s.t (XUYX) <c (X, Y) and x G Xx;
• My G Y, there is a pair (XljYl) G C s.t (X, Y) <c (Xx, Yi) and y G Yi.

Définition 3.21. The Galois sub-hierarchy S is the suborder of the Galois lattice
induced by its non-empty simplified éléments.

Figures 9 and 10 show a binary relation, which is a variant of the previous
example, and the following associated structures: the Galois lattice, the simplified
Galois lattice, and the Galois sub-hierarchy. The Galois lattice, as well as the
Galois sub-hierarchy may be interpreted as standard inheritance hiérarchies that
each organizes the input classes. The left part of a simplified pair contains the
names of the input classes defined by this vertex. When this left part is empty,

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 531

1

2

3

4

5

a

X

X

X

X

b

X

X

c

X

X

X

X

d

X

e

X

f

X

X

A binary relation R2on E- f], 2,3, 4, 5} and F = (a, b, c, d, e, fj

FIGURE 9. Relation R2.

au»

eu.

({3},{acdf}) ({4},{acef})

({Uabcdef})

Galois lattice for the relation R2

({3},{d}) ({4},{e})

({ U I)

Gatois lattice where vertices are simplified
according to objects and properties

(UMI)
Galois sub-hierarchy where vertices

are simplified
according to objects and properties

FIGURE 10. Simplification according classes (left), properties
(center), and Galois sub-hierarchy (right).

a new factorization superclass has been discovered. The right part of a simplified
pair contains the properties declared by the vertex. When this right part is empty,
all properties of the vertex are declared by superclasses. The Galois sub-hierarchy
preserves the most informative part of the lattice: all the vertices that either define
at least one class, or déclare at least one property.

532 M. HUCHARD, H. DICKY AND H. LEBLANC

4. A SIMPLE CONSTRUCTION SCHEME

As a background of the algorithms we want to characterize, we propose a simple
construction scheme for the Galois sub-hierarchy. Its rôle is to help to understand
the behaviour of the algorithms to be characterized, thus it has to be considered
without efficiency concern, only as a starting point to develop efficient (polynomial)
algorithms.

This construction is based on producing two kinds of set pairs:

• pairs 0(/({e})), /({e})), for every e G E\
each pair is obtained from a single class e, by the construction of the pair of
closed sets that defines this class;
the set of these pairs will be denoted by Oc for "Obtained from a Class" ;

• pairs (g({a})J(g({a}))), for every a G F)
these pairs are obtained from a single property a, when building the pair of
closed sets that déclares this property;
we will dénote by Op the set of such pairs for "Obtained from a Property".

Let us remark that, firstly Oc and Op may intersect, secondly several properties
(resp. classes) can lead to the same pair of closed sets, when g{{a}) = g({af}) for
some a, a1 G F (resp. /({e}) — /({e'}), for some e, e' G E), and then an efficient
algorithm based on this principle, at least, has to avoid redundant computation of
pairs. The algorithms studied later properly produce some of these pairs, without
duplicates. The pairs are ordered according to the inclusion between left (or right)
members.

Let 1Z be a binary relation between E and F, and (ƒ,#) defined as in 3.1. Let
L be the Galois lattice (resp. S the Galois sub-hierarchy) associated with 71, and
dénote by V(C) (resp. V(S)) its set of vertices. Let Oc = {(^(/({e})),/({e})),
for e£ E} and OP = {{g({a})J(g{{a}))), for a G F}. Finally let V be the set of
empty simplified pairs. By définition of «S, V{$) = V(C) \ V.

We prove below (Th. 4.4) the correctness of such a construction, that is V(S)
= OcUOP.

Lemma 4.1. Oc U Op Ç V^C)), that is the produced pairs are vertices of C.

Proof. By Proposition 3.12, /({e}) for e G E is a closed set with respect to hE-
g(f({e})) is the associated closed set with respect to IIF in the isomorphism be-
tween Ce and Cj?, thus (g(f({e})), /({e})) is an element of C.

We have thus Oc Ç V(£))- Symmetrically, using Proposition 3.16,
OP ç V(£). D

Lemma 4.2. (OcUOp)nV = 0, that is no empty simplified element is produced.

Proof. For y e F, the pair (g({y}), f(g({y}))) can not be an empty simplified
element, since in particular y G f (g ({y})) and by Properties 3.13 and 3.14,
y can not appear in higher éléments. Then Op H V = 0. Symmetrically, by
Properties 3.17 and 3.18, Oc H V = 0. D

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 533

Lemma 4.3. Every pair of closed sets which is not an empty simplified element
is produced: V(S) Ç (Oc U Op).

Proof. Let (X,Y) be a pair of closed sets of V(S). As (X,Y) g V, either X
contains a class which does not belong to lower éléments of £, or Y contains a
property which does not appear in higher éléments. In the second case, let y such
a property. If (X\Y') is the simplified form of (X,Y) according to classes and
properties, y G Y1 and by Property 3.13, g({y}) = X. As a resuit, (X,Y) G OP.
The first case is symmetrical, and gives (X,Y) G Oc- •

Theorem 4.4. Let 71 be a binary relation and (f,g) defined as in 3.1. Let S
be the Galois sub-hierarchy associated with 71, and V(S) its set of vertices. If
Oc = {(<?(ƒ ({e})), ƒ ({e})), for e G E} and OP = {(g({a}\ f(g({a}))), for a G F},
thenV(S) = OcUOp.

Proof Prompreviouslemmas, wehaveV(<S) Ç (Oc^Op) Ç V(C). This inequality
may be rewritten removing the set V, giving (V(S) \ V) Ç ((Oc U Op) \ V) Ç
(V(C) \ V), or, since (Oc U OP) H V = 0, V(S) Q (Oc U OP) Ç V(S). D

Next sections propose a characterization of several global algorithms, using the
Galois lattice framework. For each algorithm, three subsections describe respec-
tively:

• the notations and aims of the authors;
• a présentation of the algorithm;
• a characterization of what is computed by the algorithm.

For each algorithm, we match the notations of the papers with our own (£?, F, ƒ,
9, .»)•

5. CHEN AND LEE ALGORITHM [2]

5.1. NOTATIONS AND AIMS

Objects are given with their set of properties. Figure 11 is an example found
in [2] where it is used to describe the algorithm. The object set is E • = T
= {*i,...*n}, the property set is F = A = {a i , . . .o n }. A "class" is defined
as a subset of A, a "set of classes" is defined as a partition of A. A mapping IC
(for "Inverse Containement") is defined by IC(a) = g({a}), for a e A (and IC(C)
= 9(C)ïorCeV(A)).

The algorithm is intended to produce a subtype hierarchy, which is defined
as types (classes in our vocabulary) ordered by the inclusion relation between
property sets (Fig. 12). In this figure and in some places in our description of the
algorithm, the symbol which is used in the Chen and Lee paper to dénote the right
part (simplified) of a pair (the class, for the authors), will also be used to dénote
the pair itself.

It is important to mention that the paper also contains a more genera! discussion
about properties, which is not detailed here since it is out the scope of this paper.

534 M. HUCHARD, H. DICKY AND H. LEBLANC

tl

t2

t3

t4

t5

t6

a
t8

t9

al

X

X

X

X

X

X

X

X

X

a'2

X

X

X

X

X

X

X

X

X

ai

X

X

X

X

X

X

X

X

X

a4

X

a5

X

X

X

X

X

aó

X

X

X

a7

X

a8

X

a9

X

alO

X

X

ail

X

X

al2

X

a!3

X

a!4

X

X

X

al 5

X

X

X

al6

X

X

al7

X

X

FIGURE 11. Relation R3.

cl4 {t6}

clO

cl2 {t4}, {al2al3}

FIGURE 12. Subtype hierarchy for relation R3.

5.2. ALGORITHM DESCRIPTION

We will follow the steps as they are presented in Chen and Lee paper.

Step 0. E> "Find IC(a) for each attribute a" [2].
As a resuit, g({a}) is computed for every a e F.

g(-[al})=g({a2})=g({a3})
={tl, t2, t3, t4, t5, t6, tl, t8, t9}

g(-Ca4})=g({a7})={tl}
g({a5})={t2, t3, t4, t5, t6}
g«a6})=g(-Cal5»={tl, t2, t3>
g«a8})={t2}
g({a9})={t3}

g({al0»=g(-Call})=-Ct4, t5}
g({al2»=g({al3})=-Ct4}
g({al4»=-Ct4, t5, t6}
g({al6})={t7, t8>
g({al7})=-Ct8> t9>

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 535

S t e p 1. t> "Find a partition of attribute set A as a set of classes C' (. . .) based
on the équivalence relations among the containment sets of attributes" [2J.

This allows to obtain the pairs (X, Yf) where X — g({a}) and Y1 is the set
f(g({a})) simplified according to properties.

In the following, such a set will be denoted by ƒ'(#({&})) and not (f(g({ct}))Y
as an extension of the "prime" notation, and for sake of readibility. Each set Yf

built in such a way is a class.
Xl={tl, t2, t3, t4, t5, t6, t7, t8, t9}

Y'l=Ci={al, a2, a3>
X2={tl}

Y>2=C4={a4, a7}
X3^{t2, t3, t4, t5, t6>

Y'3=C5={a5}
X4={tl, t2, t3}

Y'4=C6={a6, al5>
X5={t2}

Y'5=C8={a8}
X6-{t3}

YJ6=C9={a9>
X7={t4, t5}

Y'7=C10={al0, all}
X8={t4>

Y>8=C12={al2> al3}
X9={t4, t 5 , t6}

Y'9=C14={al4}
X10={t7, t8}

Y)10=C16={al6}
Xll={t8, t9}

Y'll=C17={al7}

In the following, C' = {Cl... C17}.

Steps 2.1 and 2.2. > "Greate the directed acyclic graph G — (Cf,Ed), where
Ed = {ei —> Cj/IC(cj) C IC(ci)} (. . .) . Remove all the transitive subclass rela-
tions" [2].

The following order < is built: (XUY{) < (X2,Y£) iff X1 c X2.
This order is the lattice order.

Step 2.3. o "Associate objects T to classes (. . .) . For each object U, consider the
subgraph Gi induced by Cj }s such that ti is in IC(Cj). If Gi contains only one
leaf then associate U to that leaf; otherwise, create a class c with no attributes
and add edges from the leaves to c and associate U to c" [2].

This step may be characterized in the following way:

• for an object t such that there is a property a with f(g({a})) — ƒ({*})> a
pair C = (X,Y), Y = ƒ({£}) was built at Step 1, and by Proposition 3.17,
t e Xf. An example of this case is given with t = te and a = a\±\

• for an object t such that there is.no property a with f(g({a})) = ƒ({£})> a
pair C = ({*},0) is created and linked to the lower classes Cj such that t G
g(Cj). Let Cext be the pair extended considering that the link corresponds

3In this paper "leaf" is used in the common object-oriented meaning, for classes that have
no sub-classes. In graph theory, they are leaves while considering the inheritance link oriented
from classes to sub-classes.

536 M. HUCHARD, H. DICKY AND H. LEBLANC

to an inclusion relation: if Cy^ is the right part of the pair, Cyxt contains
the right parts of higher pairs, and as Cext has no lower pairs, 'CJp* = {t}.
For each property a$ of t, a pair (g({a>i}), f(g({a>i})) was built, with t G
g({cti}). This pair is higher than Cext after the linkage, thus (considering
ail ai) ƒ({£}) Ç Cyxt. Furthermore, the éléments higher than Cet are pairs
& = (C3

X,C3
Y) such that t G C3

X. For each of them, ƒ({£}) 2 Cf, thus
/({t}) contains their union C^ and finally Çfxt = ƒ({*})•

The resuit for the example appears in Figure 12, where object set and property
sets are simplified.

5.3. CHARACTERIZATION

Theorem 5.1. The algorithm of Chen and Lee buüds the following graph:
• Vertices are:

— (first form) ail pairs of Op, and
— (second form) ail pairs ({*},ƒ({£})> t ^ E, <swc/i that there is no pair

(-,ƒ({£}) inOp ;
• links are:

— vertices of the form 1 are linked according to the transitive réduction of
Ç between extended left parts, thus like they would be linked in the Galois
lattice;

— vertices of the form 2 are not linked together;
— vertices of the form 2 are linked to lower vertices of form 1, according

to Ç between extended left parts.

The proof was given in the previous section.
Let us look now at this resuit. For a vertex of the second form, {t} may be

a closed set (such that g(f({t})) = {t}) but not necessarily. When it is not the
case, ({t}, ƒ({£})) £• (S, and some vertices of the Galois sub-hierarchy S are not
represented in the graph. They are indeed split into several éléments of the form 2.
Some links are missing to represent the entire Ç relation between right parts, more
precisely, possible links between vertices of form 2, and links from a vertex of form
1 to a vertex of form 2.

We give an example where the subtype hierarchy is not exactly the Galois sub-
hierarchy. The relation of Figure 13 is ordered by the algorithm into the subtype
hierarchy of Figure 14.

For the relation of Figure 13, Step 1 produces the pairs below:
Xl={tl, t3 , t7, t8 , t9> Y'l=Cl={a}
X2={t2, t3 , t7, t8 , t9> Y'2=C2={b>
X3={t4, t6, t7, t8 , t9> Y)3=C3=<c}
X4={t5, t6, t7, t8 , t9} YM=C4={d>
X5={t9} Y'5=C5={e>

These pairs define four incomparable classes. During Step 2.3, four classes
are created, respectively for £3, t§, t7 and tg, since these objects belong to the
(extended) left part of several incomparable classes. For example, £3 is in the (ex-
tended) left part of Ci and C2. As a second example t7 is in the (extended) left

GALOÏS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS

b c d e

537

a

tl

t2

t3

t4

t5

t6

t7

t8

t9

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

FIGURE 13. Relation R4.

C6 {t3}

C2 {t2}, {b} C3 {t4},{c}

{t7},{}

C8
{t9}, {e}

C5

FIGURE 14. Subtype hierarchy for relation R4.

part of Ci,C2,C3 and C4. Comparing the subtype hierarchy to the Galois sub-
hierarchy (Fig. 15), we see that the pair of closed sets of the Galois sub-hierarchy
({£7,£8}, {a, 6,c,d}) is split into two vertices (Cg and C9). Some inclusion rela-
tions between property sets are not represented by links in the subtype hierarchy.
For example, between the vertices of form 2 Cg and C^, or from the vertex C9 of
form 1 to C% of form 2.

6. MOORE et al ALGORITHM [14]

6.1. NOTATIONS AND AIMS

This algorithm takes as input an object set E, a property set Fy and a binary
relation 1Z between them. The resuit is a directed acyclic graph whose vertices
are labeled by objects and properties. In this graph, a vertex v can be associated
with each object, such that properties of the label of v joined with the properties
of higher vertices ("superclasses") labels is exactly the property set of the object.

538 M. H U C H A R D , H. DICKY AND H. LEBLANC

a} {t2},{b} {t4}, {c} {t5}, {d}

FIGURE 15. Galois sub-hierarchy for relation R4.

a b c d e

ol

o2

o3

o4

X

X

X

X

X

X

X

X X

X

X

X

FIGURE 16. Relation R5.

This graph satisfies the following properties:

• maximal factorization: a property appears on a unique vertex of the graph;
• minimal number of internai node;
• inheritance links consistency: ail objects that inherit from a class C also

inherit from a class D, then C must be a subclass of D\
• the graph does not contain transitivity edges;
• objects must be represented by leaves.

The authors consider the last point as a less important criterion that may be
relaxed, by slight modifications of the algorithm. These criteria, as noticed by
the authors, uniquely deflne the resulting hierarchy. Our characterization is an
alternative proof of that point.

6.2. ALGORITHM DESCRIPTION

The algorithm is described, as in [14], using the relation presented in Figure 16.

Step 1. 1Z is first represented as a directed bipartite graph, the "grouping graph"
that we dénote by Gg. The two set of vertices are E and F. For e G E and ƒ G F,
ƒ e is an edge of Gg iff (e, ƒ) G TZ.

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 539

a b c d e

FIGURE 17. The grouping graph associated with relation R5.

Q

(01,02,04) (ol,o2~o3J [ol>

FIGURE 18. The mapping graph for relation R5.

Obviously, in this graph, if we consider a vertex o of £?, and its predecessors
in F, we obtain a pair ({o}, /({o})); respectively, if we consider a vertex a of F
and its successors in E, we obtain a pair (g({a}), {a}).

Step 2. The set of all g({a}), Va € F, is built, and its éléments are the labels of
new nodes added in order to represent factorizations. An edge is introduced from
the vertex labelled by a to the vertex labelled by g({a}). For any o € #({a}), the
edge ao is removed. Each edge represents now either a pair (#({&}), {a}), or a pair
(W,») , y € f'({o})), where /'({o}) = ƒ ({o}) \ {a/3o' ? o s.t. a € /(o')}, /'({o})
represents f ({o}) restricted to properties that are owned only by o (see Fig. 18).
f ({o}) is thus a closed set simplified according to properties.

Classes of the output hierarchy are obtained by completing the label of nodes
which represent factorizations or input objects (such vertices are in boxes of
Fig. 18). Such a completion consists in adding to the node label the properties
which are at the origin of the edges ending at the node. A node representing a fac-
torization corresponds now to at least a pair (#({&}), /'G?({a}))) where ƒ'(<?({&})))
is the result of the simplification of ƒ (g({a,})))> A node representing an input ob-
ject corresponds now to at least a pair ({o}, /'({o})). If an edge ends at the node,
/'({o}) is not empty. No duplicate pairs are produced during the construction.
Figure 19 shows the result.

Step 3. Classes are ordered with respect to inclusion of the label's objects. The
hierarchy contains only the transitive réduction of this order (Fig. 20).

6.3. CHARACTERIZATION

We begin with a proposition, then prove two characterization theorems.

540 M. HUCHARD, H. DICKY AND H. LEBLANC

ol, o2, o3

b

FIGURE 19. Classes for relation R5.

' N

ol, o2, o4

FIGURE 20. Class hierarchy for relation R5.

Proposition 6.1. If for all object pairs (e',e")? /(e') and /(e") are incompara-
ble, then for any e e E we have /ijs({e}) = {e}.

Proof Let us assume the contrary. If there is e e E with fr#({e}) / {e}, then
3e' ^ e such that e1 e hE({e}), that is f{ë) D /(e).

D

Theorem 6.2. The Moore and Clement algorithm builds the Galois sub-hierarchy
associated with lZ\J{(o,ao)/o e E}} where ao is a property added to each object
and which is not owned by any other object (this property disappears after building).

Proof. The conditions of Proposition 6.1 are satisfied, since, thanks to additonal
properties, two objects can not have comparable property sets with respect to
inclusion. It follows from the proposition and the algorithm description that ail
pairs {(h({e}),f({e}))/e G E} and ail pairs (g({a}), /'(<?({a}))) are processed. D

The différence with the Galois sub-hierarchy of K comes from the constraint
requiring objects to be leaves of the output hierarchy.

Theorem 6.3. The Moore and Clement algorithm builds all vertices of the Galois
sub-hierarchy of 1Z which have the forms 1 and 2 (see Chen and Lee characteriza-
tion). Moreover, pairs ({o}, f {{o})), where there is one pair (-, f ({o})) in Op,
are added. These pairs are ordered with respect to inclusion of their object sets
(left part).

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 541

{} {a,e} {o3}{b}

{o4}{d}

FIGURE 21. Galois sub-hierarchy of relation R5.

{o3},{b}

FIGURE 22. Chen and Lee Subtype hierarchy for relation R5.

The proof is easily deduced from the algorithm description.
Figure 21 shows the Galois sub-hierarchy for the same Relation R5, while

Figure 22 shows the subtype hierarchy that would be built using the Chen and
Lee algorithm. Only the Galois sub-hierarchy orders correctly the object o2 with
respect to the inclusion order between property sets: o2 is indeed higher than ol
(a superclass). Concerning o3, this object is represented by a node which is not a
leaf in the Galois sub-hierarchy and the Chen and Lee subtype hierarchy, but is a
leaf in the Moore and Clement hierarchy.

7. COOK ALGORITHM [4]

7.1. NOTATIONS AND AIMS

This algorithm is part of a method for the construction of an interface hierar-
chy reflecting a Smalltalk-80 class hierarchy and highlighting some controversial
design features. Each class is associated with its "protocol", which contains the
valid selectors (or method names) for the class. This protocol is a very simple
interface for the class. The algorithm is assumed to build a protocol hierarchy,
more precisely a hierarchy where protocols are organized with respect to inclusion.

We will follow the algorithm on the short example below, taken from [4]. Three
classes A, B and C are given together with their protocols.

protocol(A)={isEmpty, at}

protocol(B)={isËmpty, at, add, remove}

protocol(C)={isEmpty, add, remove, first}

5 4 2 M. HUCHARD, H. DICKY AND H. LEBLANC

NI ({A,B,C},{isEmpty})

N2 ({A, B},{at}) ({B C},{add, remove}) N3

î
({CMfirst}) N 4

FIGURE 23. Pairs of closed sets ordered at Step 2.

These protocols are organized so as to respect inclusion and to make selector
sharing explicit. In our notation, E is the set of classes, F the set of selectors, and
for a class C, ƒ (C) is the protocol associated with C.

7.2. ALGORITHM DESCRIPTION

Step 0. The relation "inverse" is first computed, giving the following resuit:
inverse(isEmpty)={A, B, C}
inverse(at)={A, B}
inverse(add)={B, C}
inverse(remove)={B, C}
inverse(first)={C}

In our notations, Mx G F, inverse(x) = g({x}). The effect of this step is to
produce g ({s}), for each s G F.

Step 1. Pairs of closed sets (inverse(s), hierarchy(inverse(s))) for each s G F,
(in our notation (#({s}), f'(g({s})))), are produced through the computation given
below of the mapping hierarchy:

hierarchy : V(E) -> V(F)
For every s E F, hierarchy(inverse(s)) <— 5 (s is added to hierarchy(inverse(s))).

This algorithm, for each closed set X of E such that there is a G F with
X = g ({a}), gives indeed the set {5 s.t. g({s}) = X}.

For the example, the produced pairs are the following:
(U, B, C},{isEmpty})
({A, B},{at})
({B, C},{add, remove})
(•CO, {first})

No précise algorithm is given for the next Steps 2 and 3.

Step 2. Pairs produced at Step 1 are ordered with respect to inclusion between
left members (class sets). Figure 23 shows the resulting hierarchy.

Step 3. The simplification according to objects applies, since a class name is as-
sociated with the "minimum of all nodes in which the class appears (a minimum
node may need to be added for it)" [4]. For example, A and C are associated
respectively with nodes JV2 and AT4. However, for classes such as £?, which appear
in several minimal nodes (7V2 and N3)) this description may have several inter-
prétations. We will assume that a new node is created for each problematic class,

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 543

and linked to the minimal nodes where the class appears. There is no argument
specifying whether these new nodes are or not linked together.

7.3. CHARACTERIZATION

The characterization theorem and the corollary are given when the above as-
sumption holds.

Theorem 7.1. All pairs of Op, simplifiée according to properties, that is all pairs
(g({a}), /'(#({a}))) where a £ F, are produced at Step 1 (form 1). Moreover, for
each class C such that there is no (—, f({C})) in Op, a pair ({C},{}) is created
(form 2). All these pairs are ordered by inclusion of their left part.

Proof The proof is deduced for pairs of form 1 from the algorithm description.
Concerning pairs of form 2, the description of Step 2.3 of the Chen and Lee algo-
rithm applies. •

8. MINEAU et ai ALGORITHM [13]

We now present an algorithm published in the field of knowledge représentation,
where the same problems arise.

8.1. NOTATIONS AND AIMS

The objects to be hierarchically organized are represented by conceptual graphs,
which are graphs composed of two kinds of nodes, concept4 nodes and relation
nodes. In this particular case, relations are supposed to have an arity equal to
two, thus relating two concepts. A graph of an object is decomposed into a set
of triplets (Ci,r, C2), where C\ and C2 are concepts and r a relation. A tripiet
(Ci, r, C2) is generalized by replacing Ci, C2 and/or r, by the character '?', giving
seven new incomplete triplets. In our context, triplets will be the properties, and
it is notable that they are related by some kind of partial generalization order. In
this generalization order {1, parts, ?) is above {éléphant, parts, ?). Each incomplete
tripiet IT, that is containing one or more "?", is associated with one or several
"instanciation lists", one for each object O of whom at least one complete tripiet
may instantiate IT. Each instanciation list consists of one or several "element
lists", one for each complete tripiet of O which instantiates IT and these "element
lists" describe the different ways the characters "?" may be replaced to obtain the
complete triplets.

Let us take an example. We have two objects Oa and O&, each composed
of two complete triplets. Oa = {(a, r, l)(a,r, 2)}, Ob = {(b,r,l){b,r,2)}. The
instantiation lists of the incomplete tripiet (?,r, ?) are ((al)(a2)) and ((61)(62)),
while the instantiation lists of (?, ?, 1) are ((ar)) and {(br)).

To simplify further discussion, we introducé the "extended instantiation list" of
an incomplete tripiet, which is the set of all the complete triplets that instantiate

4 Concepts in terms of conceptual graphs and unrelated to concepts of the Galois lattice.

544 M. HUCHARD, H. DICKY AND H. LEBLANC

the incomplete tripiet (the extended list of instantiations of a complete tripiet will
be composed of the sole complete tripiet). In our previous example, the extended
instantiation list of {?, r, ?) is ((a, r, 1) (a, r, 2) {b, r, 1) (6, r, 2)) while the extended
instantiation list of (?, ?,1) is ({a,r, 1) (6,r, 1)) The généralisation order upon
triplets is isomorphic to the order of inclusion upon their extended instantiation
list s.

Some triplets are useful generalizations5, while the otters are superfluous. A
tripiet T is useless if and only if it has at least one occurrence of a "?" which is in-
stantiated by the same symbol through all the complete triplets of the instantiation
list of T. We will call such a "?" useless.

In our previous example (?, ?, 1) is useless because its second "?" is always
instantiated by "r".

Proposition 8.1. A closed set of properties is déterminée by its useful triplets,

Proof First, there cannot be any useless tripiet in a closed set of properties with-
out its associated useful tripiet, Le. the useful tripiet we get when we replace
the useless "?" by their appropriate symbol(s). Both the useless tripiet and its
associated useful tripiet have indeed the same extended instantiation list.

Conversely, whenever a useful tripiet T belongs to a closed set of properties, all
the ancestors of T in-the property order alsö belong to the unsimplified closed set of
properties, because of the way the generalization order on properties is built. D

In the previous example (?, ?, 1) will belong to the same closed set of properties
as <?,r, 1).

This property will allow a new simplification of the closed sets of properties,
keeping only useful properties.

One just adds all the ascendants (in the tripiet order) of any useful tripiet of a
simplified closed set of properties to get the whole closed set.

We dénote by ƒ " the composition of the two simplifications that get rid of both
the inherited and the useless properties.

8.2. ALGORITHM DESCRIPTION

We limit our description to the création of concepts (pairs of closed sets). The
paper, however,contains also a detailed algorithm building the transitive réduction
of the inclusion order.

An intersection matrix IM represents the relation 7Z. E is the set of the objects
represented by the conceptual graphs. F is the set of triplets. For a concept C,
we shall note CL its left part, and CR its right part. For an incomplete tripiet,
p, we shall note IL(p) its instantiation list.

For each property (tripiet) p € F do {
N = g({p})
if there is not yet a concept C such that CL = N

then create a concept C with CL = N and CR = 0
5The authors call them "maximal" triplets.

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 545

let the concept C such that CL = N
if p is a complete tripiet

then CR <- CR U {p}
else if p is incomplete and useful

then CR <- C.tf U {p, /£(p)}

We shall take an example which is drawn from Relation R5, where a property a,
is replaced by a complete tripiet (xa, ra, ya). We consider four objects with three
complete triplets. Ol = {(xa,ra,ya)^(xb,rbyyb),{xc,rc,yc)}J O2 = {(xa,ra,ya),
(xb,rb,yb)}, 03 = {(xb,rb,yb)} O4 = {(xa,ra,ya),{xcyrc,yc)}.

We can remark that the only incomplete useful tripiet is (?,?,?). Three con-
cepts Cl, C2 and C3 will be created, with6 Cl.L - {01,02,04}, Cl.R =
{(^a,ra,ya)}, C2.L = {01,02,031,02.^ - {{xö,r&,y6)}, O3.L = {Ol,O4},
C3.R - {{o;c, re, yc)} C4.L = {Ol, O2,03,04}, C4.R = {{?, ?, ?)}.

6IL(p) is not written out.

<xa, ra, ya>

<xb, rb, yb>

<xc, rc,yc>

<?, ra, ya>

<xa, ?, ya>

<xa, ra, ?>

<?, rb, yb>

<xb ?, yb>
<xb, rb, ?>

<?, re, yc>

<xc ?, yc>
<xc, re, ?>

<?, ?, ya>

<?,ra,?>

<xa, ?, ?>

<?, ?, yb>

<?, rb, ? >

:<xb, ?, ?>

<?, ?, yc>

<?, re, ? >

<xc, ?, ?>

<?,?, ?>

Ol

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

O2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

O3

X

X

X

X

X

X

X

X

O4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

FIGURE 24. Relation R6.

546 M. HUCHARD, H. DICKY AND H. LEBLANC

{01,02,03,04} {<?,?,?>

{01,02,04} {<xa,ra,ya>} {01,02,03} {<xb,yb,rb>}

{01,04} {<xc, rc, yc>}

FIGURE 25. The graph of relation R6.

As expected, several closed sets of Oc are not built: the pair of closed sets
({Ol}, {(xa^ra^ya), (xb^rb^yb)^ (xc,rc,yc)}) or the pair corresponding to 02.

8.3. CHARACTERIZATION

Theorem 8.2. The algorithm produces ail pairs ofOp, simplified by the removal
of both useless generalizations and inherited properties, that is all the pairs of
closed sets (g(\p})J"(g({p}))), withpe F.

This cornes easily from the algorithm description. The fact that the algorithm
builds only these pairs is mainly due to trie aimed application. The objects to
be organized are not supposed to be comparable: neither a generalization nor a
specialization of an éléphant is not comparable to any other animal.

9. CONCLUSION

Firstly, we summarize the main éléments of our study. As we have seen, none
of the four algorithms studied hère can be used to obtain the whole Galois sub-
hierarchy. Ail of them produce the pairs of Op, but diverge about the computation
of pairs that "take the place of" more or less the pairs of Oc \ Op. The next
theorem recalls summarizes this.
Theorem 9.1. • The studied algorithms produce all the pairs of Op.

• The Chen and Lee algorithm and the Cook algorithm are equivalent. They
add to the initial pairs the pairs ({£}, ƒ({*}) t £ E, such that there is no pair

• The Moore and Clement algorithm adds, to this common base, the pairs
(W> f({o})), such that (-, f({o}) e OP.

• In ail algorithms, pairs are ordered with respect to the inclusion of their left
members (object sets).

Such theorems allow to figure the results of the algorithms without running them
(and that is indeed the way we draw the hiérarchies of the stream example).

The similarities between these algorithms renew the interest of the Galois lat-
tice, as a "natural" structure to find inheritance hiérarchies.

GALOIS LATTICE AND CLASS HIERARCHY BUILDING ALGORITHMS 547

It would be misleading not to mention that the use of the Galois lattice suf-
fers from a few drawbacks. Firstly, it is a complex structure, in the worst case,
exponential in the number of input objects and properties. This complexity is for-
tunately reduced in the Galois sub-hierarchy which has a number of vertices that
can not exceed the sum of the number of properties and the number of input ob-
jects. Secondly, this structure implies multiple inheritance, requiring adjustments
for languages that have only single inheritance. Finally, a maximal factoriza-
tion, although globally interesting, is not always the better choice in design terms.
Netherveless, we think that the advantages are sufïiciently numerous to justify our
choice. The fact that the structure is formally defined allows a good and easy
characterization of all opération results. The maximal factorization induces max-
imal reuse, and any change on a property is confined to the class that déclares
the property. The structure is the minimal structure that ensures maximal factor-
ization. As a further criticism, this model may not seem accurate enough, as far
as properties are concerned, since it does not take into account overloading and
overriding features. For an extension to a more realistic model, the reader can
refer to [6,7], Several high-scale expériences are also reported in [10,11].

Note. We are involved, in the framework of an industrial project (supported by
the France Télécom Research and Development center) in the construction of a
class hierarchy development platform [3] for object languages such as C++, Java
or Eiffel. This platform is dedicated to the Galois sub-hierarchy construction and
évolution.

Acknowledgements. Authors would like to thank the anonymous référées for their metic-
ulous review.

REFERENCES

[1] M. Barbut and B. Monjardet, Ordre et classification : Algèbre et combinatoire. Hachette
(1970).

[2] J.-B. Chen and S.C. Lee, Génération and reorganization of subtype hiérarchies. J. Object
Oriented Programming 8 (1996).

[3] N. Chevalier, M. Dao, C. Dony, M. Huchard, H. Leblanc and T. Libourel, An environment
for building and maintaining class hiérarchies, in ECO OP 99 Workshop - Object-Oriented
Architectural Evolution (1999).

[4] W.R. Cook, Interfaces and Spécifications for the Smalltalk-80 Collection Classes, in Special
issue of Sigplan Notice - Proceedings of ACM OOPSLA'92 (1992) 1-15.

[5] B.A. Davey and H.A. Priestley, Introduction to Lattices and Orders. Cambridge University
Press (1990).

[6] H. Dicky, C. Dony, M. Huchard and T. Libourel, On automatic class insertion with
overloading, Special issue of Sigplan Notice - Proceedings of ACM OOPSLA'96, Vol. 31
(1996) 251-267.

[7] R. Godin and H. Mili, Building and Maintaining Analysis-Level Class Hiérarchies Using
Galois Lattices, in Special issue of Sigplan Notice - Proceedings of ACM OOPSLA'93,
Vol. 28 (1993) 394-410.

548 M. HUCHARD, H. DICKY AND H. LEBLANC

[8] R. Godin, H. Mili, G. Mineau and R. Missaoui, Conceptual Clustering methods based on
Galois lattices and applications. Revue d'intelligence artificielle 9 (1995).

[9] R. Godin, G. Mineau and R. Missaoui, Incrémental structuring of knowledge bases, in Proc.
of International KRUSE symposium: Knowledge Retrieval, Use, and Storage for Efficiency.
Springer-Verlag, Lecture Notes in Artificial Intelligence 9 (1995) 179-198.

[10] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi and T.T. Chau, Design of Class
Hiérarchies Based on Concept (Galois) Lattices. Theory And Practice of Object Systems
4 (1998).

[11] M. Huchard and H. Leblanc, Computing Interfaces in Java, in Proc. of IEE International
conference on Automated Software Engineering (ASE'2000). Grenoble, France (2000) 317-
320.

[12] K.J. Lieberherr, P. Bergstein and I. Silva—Lepe, From objects to classes: Algorithms for
optimal object-oriented design. J. Software Engrg. (1991) 205-228.

[13] G. Mineau, J. Gecsei and R. Godin, Structuring Knowledge Bases Using Automatic
Learning, in Proc. of the sixth International Conference on Data Engineering (1990) 274-
280.

[14] I. Moore and T. Clement, A Simple and Efficient Algorithm for Inferring Inheritance
Hiérarchies, in TOOLS Europe 1996 Proceedings. Prentice-Hall (1996).

[15] B. Stroustrup, The C+ + programming language, third édition. Addison—Wesley (1998).
[16] R. Wille, Restructuring lattice theory: An approach based on hiérarchies of concepts,

Ordered Sets, edited by I. Rivais (1982) 23.

Communicated by Ch. Choffrut.
Rèceived June, 2000. Accepted March, 2001.

To access this journal online:
www. edpsciences. org

