@article{ITA_2000__34_2_87_0,
author = {Bampis, E. and Giannakos, A. and Karzanov, A. and Manoussakis, Y. and Milis, I.},
title = {Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {87--97},
year = {2000},
publisher = {EDP Sciences},
volume = {34},
number = {2},
mrnumber = {1774303},
zbl = {0959.05092},
language = {en},
url = {https://www.numdam.org/item/ITA_2000__34_2_87_0/}
}
TY - JOUR AU - Bampis, E. AU - Giannakos, A. AU - Karzanov, A. AU - Manoussakis, Y. AU - Milis, I. TI - Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2000 SP - 87 EP - 97 VL - 34 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_2000__34_2_87_0/ LA - en ID - ITA_2000__34_2_87_0 ER -
%0 Journal Article %A Bampis, E. %A Giannakos, A. %A Karzanov, A. %A Manoussakis, Y. %A Milis, I. %T Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2000 %P 87-97 %V 34 %N 2 %I EDP Sciences %U https://www.numdam.org/item/ITA_2000__34_2_87_0/ %G en %F ITA_2000__34_2_87_0
Bampis, E.; Giannakos, A.; Karzanov, A.; Manoussakis, Y.; Milis, I. Perfect matching in general vs. cubic graphs : a note on the planar and bipartite cases. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 2, pp. 87-97. https://www.numdam.org/item/ITA_2000__34_2_87_0/
[1] , , and , Computing a maximum cardinality matching in a bipartite graph in time O(n1.5√ m/log n ). Inform. Process. Lett. 37 (1991) 237-240. | Zbl | MR
[2] , , , and , Matchings in cubic graphs are as difficult as in general graphs, LaMI, Université d' Evry - Val d'Essonne (1995).
[3] and , Approximate and exact parallel scheduling, Part 1: The basic technique with applications to optimal parallel list ranking in logarithmic time. SIAM J. Comput. 17 (1988) 128-142. | Zbl | MR
[4] , and , Applications of the planar separator theorem. J. Inform. Process. 4 (1981) 203-207. | Zbl | MR
[5] and , Perfect matching for regular graphs is AC°-hard for the general matching problem. J. Comput. System Sci. 44 (1992) 94-102. | Zbl | MR
[6] , Paths, trees and flowers Canad. J. Math. 17 (1965) 449-467. | Zbl | MR
[7] and , Clique partitions, graph compression and speeding-up algorithms, 23th STOC (1991) 123-133.
[8] , and , Sublinear time parallel algorithms for matchings and related problems. J. Algorithms 14 (1993) 180-213. | Zbl | MR
[9] and , Cubic graphs. ACM Computing Surveys 27 (1995) 471-495.
[10] and , The matching problem for bipartite graphs with polynomially bounded permanents is in NC, 28th FOCS (1987) 166-172.
[11] , Optimal parallel algorithms on planar graphs. Inform. and Comput 84 (1990) 71-96. | Zbl | MR
[12] and , Fast parallel algorithms for graph matching problems. Oxford University Press, preprint (to appear). | Zbl | MR
[13] , and , A fast parallel algorithm for routing in permutation networks. IEEE Trans. Comput. C-30 (1981) 93-100. | Zbl | MR
[14] , Finding a maximum matching in a circular-arc graph. Inform. Process. Lett. 35 (1993) 185-193. | Zbl | MR
[15] and , Matching Theory. Elsevier Science Publishers (1986). | Zbl | MR
[16] and , An O(|V|½|E|) algorithm for finding maximum matchings in general graphs, 21th FOCS (1980) 17-23.
[17] and , Flow in planar graphs wüh multiply sources and sinks, Proc. 30th FOCS (1989) 112-117.
[18] and , Parallel algorithms for maximum matching and other problems in interval graphs, TR 88-927. Cornell University (1988).
[19] , and , Matching is as easy as matrix inversion. Combinatorica 7 (1987) 105-113. | Zbl | MR
[20] and , Planar Graphs: Theory and Algorithms. North-Holland (1988). | Zbl | MR
[21] , The four color problem. Academic Press, New York (1967). | Zbl | MR
[22] , Matching and vertex packing: how "hard" are they?, Quo Vadis, Graph Theory?, edited by J. Gimbel, J.W. Kennedy and L.V. Quintas. Ann. Discrete Math. 55 (1993) 275-312. | Zbl | MR
[23] and , An optimal parallel algorithm for graph planarity, 30th FOCS (1989) 282-287.
[24] , Maximum matching in general graphs through randomization. J. Algorithms 10 (1989) 557-567. | Zbl | MR
[25] , NC algorithms for Computing the number of perfect matchings in K3,3-free graphs and related problems. Inform. and Comput. 80 (1989) 152-164. | Zbl | MR
[26] , A theory of alternating paths and blossoms for proving correctness of the O(√VE) general graph maximum matching algorithm. Combinatorica 14 (1994) 71-109. | Zbl | MR






