@article{ITA_1999__33_3_279_0,
author = {Geser, Alfons and Zantema, Hans},
title = {Non-looping string rewriting},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {279--301},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {3},
mrnumber = {1728428},
zbl = {0951.68054},
language = {en},
url = {https://www.numdam.org/item/ITA_1999__33_3_279_0/}
}
TY - JOUR AU - Geser, Alfons AU - Zantema, Hans TI - Non-looping string rewriting JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 279 EP - 301 VL - 33 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1999__33_3_279_0/ LA - en ID - ITA_1999__33_3_279_0 ER -
%0 Journal Article %A Geser, Alfons %A Zantema, Hans %T Non-looping string rewriting %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 279-301 %V 33 %N 3 %I EDP Sciences %U https://www.numdam.org/item/ITA_1999__33_3_279_0/ %G en %F ITA_1999__33_3_279_0
Geser, Alfons; Zantema, Hans. Non-looping string rewriting. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 3, pp. 279-301. https://www.numdam.org/item/ITA_1999__33_3_279_0/
[1] and , Problems of equality and divisibility in semigroups with a single defining relation. Mat. Zametki 41 (1987) 412-421. | Zbl
[2] and , String-rewriting systems. Texts and Monographs in Computer Science. Springer, New York (1993). | Zbl | MR
[3] , Termination of linear rewriting Systems. In Proc. of the 8th International Colloquium on Automata, Languages and Programming (ICALP81), Springer, Lecture Notes in Computer Science 115 (1981) 448-458. | Zbl | MR
[4] , Termination of rewriting. J. Symb. Comput. 3 (1987) 69-115; Corrigendum 4 (1987) 409-410. | MR
[5] and , Natural termination. Theoret. Comput. Sci. 142 (1995) 179-207. | Zbl | MR
[6] and , Dummy elimination: Making termination easier. In Proc. l0th Conf. Fundamentals of Computation Theory, H. Reichel, Ed., Springer, Lecture Notes in Computer Science 965 (1995) 243-252. | MR
[7] , Termination of one-rule string rewriting Systems l → r where |r| ≤ 9. Tech. Rep., Universität Tübingen, D (Jan. 1998).
[8] , and , On proving uniform termination and restricted termination of rewriting systems. SIAM J. Comput. 12 (1983) 189-214. | Zbl | MR
[9] and , On the uniform halting problem for term rewriting Systems. Rapport Laboria 283, INRIA (1978).
[10] , Confluent string rewriting, Vol. 14 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin (1988). | Zbl | MR
[11] , and , Termination and derivational complexity of confluent one-rule string rewriting Systems. Tech. Rep., Dept. of Computer Science, Toho University, JP (1997).
[12] , Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel. Dissertation, Technische Universität Clausthal, Germany (1990). | Zbl
[13] , One-rule semi-Thue Systems with loops of length one, two, or three. RAIRO Theoret. Informatics Appl. 30 (1995) 415-429. | Zbl | Numdam
[14] and , A finite termination criterion. Tech. Rep., Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA (1978).
[15] and , Decision problems for semi-Thue systems with a few rules. In IEEE Symp. Logic in Computer Sdence'96 (1996).
[16] , The uniform halting problem for one-rule Semi-Thue Systems. Tech. Rep. 94-18, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, Aug. 1994.
See also "Correction to The Uniform Halting Problem for One-rule Semi-Thue Systems", Personal communication (Aug. 1996).
[17] , Well-behaved derivations in one-rule Semi-Thue Systems. Tech. Rep. 95-15, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (Nov. 1995).
[18] , Semi-Thue Systems with an inhibitor. Tech. Rep. 97-5, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY (1 1997).
[19] , The undecidability of self-embedding for finite semi-Thue and Thue Systems. Theoret. Comput. Sci. 47 (1986) 225-232. | Zbl | MR
[20] , Tree-manipulating Systems and Church-Rosser Theorems.J. ACM 20 (1973). 160-187. | Zbl | MR
[21] , and , On termination of confluent one-rule string rewriting Systems. Inform. Process, Lett. 61 (1997), 91-96. | MR
[22] , Confluence of one-rule Thue Systems. In Word Equations and Related Topics, K.U. Schulz, Ed., Springer, Lecture Notes in Computer Science 572 (1991). | MR
[23] and , A complete characterization of termination of 0p1q → lr0s. Applicable Algebra in Engineering, Communication, and Computing. In print. | Zbl
[24] and , A complete characterization of termination of 0p1q → lr0s. In Proc. of the 6th Conference on Rewriting Techniques and Applications, J. Hsiang, Ed., Springer, Lecture Notes in Computer Science 914 (1995) 41-55.





