@article{ITA_1999__33_3_227_0,
author = {Preller, Anne and Duroux, P.},
title = {Normalisation of the theory $\mathbf {T}$ of {Cartesian} closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {227--257},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {3},
mrnumber = {1728425},
zbl = {0936.03011},
language = {en},
url = {https://www.numdam.org/item/ITA_1999__33_3_227_0/}
}
TY - JOUR
AU - Preller, Anne
AU - Duroux, P.
TI - Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1999
SP - 227
EP - 257
VL - 33
IS - 3
PB - EDP Sciences
UR - https://www.numdam.org/item/ITA_1999__33_3_227_0/
LA - en
ID - ITA_1999__33_3_227_0
ER -
%0 Journal Article
%A Preller, Anne
%A Duroux, P.
%T Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1999
%P 227-257
%V 33
%N 3
%I EDP Sciences
%U https://www.numdam.org/item/ITA_1999__33_3_227_0/
%G en
%F ITA_1999__33_3_227_0
Preller, Anne; Duroux, P. Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 3, pp. 227-257. https://www.numdam.org/item/ITA_1999__33_3_227_0/
[1] , and , Categorical reconstruction of a reduction free normalisation proof, preliminary version, P. Dybjer and R. Pollacks, Eds., Proceedings CTCS '95, Springer, Lecture Notes in Computer Science 953 (1995) 182-199. | MR
[2] and , An inverse to the evaluation functional for typed λ-calculus, in Proc. of the 6th Annual IEEE Symposium of Logic in Computer Science (1991) 203-211.
[3] , Embedding of a free Cartesian Closed Category in the Category of Sets. J. Pure and Applied Algebra (to appear). | Zbl | MR
[4] , and , Normalization and the Yoneda Embedding, MSCS 8 (1998) 153-192. | Zbl | MR
[5] , Isomorphisms of Types, Birkhaeuser (1995). | Zbl
[6] and , The maximality of Cartesian Categories, Rapport Institut de Recherche de Toulouse, CNRS, 97-42-R (1997).
[7] and , Introduction to Higher Order Categorical Logic, Cambridge University Press (1989). | Zbl | MR
[8] , Algebra of constructions I. The word problem for partial algebras. Inform. and Comput. 73 (1987) 29-173. | Zbl | MR





