@article{ITA_1999__33_1_47_0,
author = {Selmi, Carla},
title = {Strongly locally testable semigroups with commuting idempotents and related languages},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {47--57},
year = {1999},
publisher = {EDP Sciences},
volume = {33},
number = {1},
mrnumber = {1705855},
zbl = {0940.68072},
language = {en},
url = {https://www.numdam.org/item/ITA_1999__33_1_47_0/}
}
TY - JOUR AU - Selmi, Carla TI - Strongly locally testable semigroups with commuting idempotents and related languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 47 EP - 57 VL - 33 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1999__33_1_47_0/ LA - en ID - ITA_1999__33_1_47_0 ER -
%0 Journal Article %A Selmi, Carla %T Strongly locally testable semigroups with commuting idempotents and related languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 47-57 %V 33 %N 1 %I EDP Sciences %U https://www.numdam.org/item/ITA_1999__33_1_47_0/ %G en %F ITA_1999__33_1_47_0
Selmi, Carla. Strongly locally testable semigroups with commuting idempotents and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 1, pp. 47-57. https://www.numdam.org/item/ITA_1999__33_1_47_0/
[1] , Finite Semigroups and Universal Algebra, River Edge. N.J. World Scientific, Singapore (1994). | Zbl | MR
[2] , The algebra of implicit operations. Algebra Universalis 26 (1989) 16-72. | Zbl | MR
[3] , Equations for pseudovarieties, J.-E. Pin Ed., Formal properties of finite automata and applications, Springer, Lecture Notes in Computer Science 386 (1989). | MR
[4] , Implicit operations on finit e J-trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | Zbl | MR
[5] , On pseudovarieties, varietes of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27 (1990) 333-350. | Zbl | MR
[6] and , Relatively free profinite monoids: an introduction and examples, J. B. Fountain and V.A.R. Gould Eds., Semigroups, Formal Languages and Groups (to appear) (Da rivedere). | Zbl | MR
[7] and , Free profinite semigroups over semidirect products, Izv. VUZ Matematika 39 (1995) 3-31; English version, Russian Mathem. (Izv. VUZ.) 39 (1995) 1-28. | Zbl | MR
[8] , and , On the varieties of languages associated with some varieties of finite monoids with commuting idempotents. Inform. and Computation 86 (1990) 32-42. | Zbl | MR
[9] and , Languages and scanners. Theoret. Comput. Sci. 84 (1991) 3-21. | Zbl | MR
[10] and , Characterization of locally testable events. Discrete Math. 4 (1973) 243-271. | Zbl | MR
[11] , Automata, languages and machines. Academic Press, New York, Vol. B (1976). | Zbl | MR
[12] and , On pseudovarieties. Adv. in Math. 19 (1976) 413-418. | Zbl | MR
[13] , Algebraic decision procedures for local testability. Math. Systems Theory 8 (1974) 60-76. | Zbl | MR
[14] , Variétés de Langages Formels, Masson, Paris (1984). | Zbl | MR
[15] and , Monoids of upper triangular matrices. Colloq. Math. Societatis Janos Bolyai 39 Semigroups, Szeged (1981) 259-272. | Zbl | MR
[16] , The Birkhoff theorem for finite algebras. Algebra Universalis 14 (1982) 1-10. | Zbl | MR
[17] , On finite monoids having only trivial subgroups. Inform. and Control 8 (1965) 190-194. | Zbl | MR
[18] , Langages et semigroupes testables. Doctoral thesis, University of Paris VII, Paris (1994).
[19] , Over Testable Languages. Theoret Comput. Sci. 162 (1996) 157-190. | Zbl | MR
[20] , Piecewise testable events. Proc. 2nd GI Conf., Springer, Lecture Notes in Computer Science 33 (1975) 214-222. | Zbl | MR
[21] , Implicit operations on pseudovarieties: an introduction, J. Rhodes Ed., World Scientific, Singapore, Semigroups and Monoids and Applications (1991). | Zbl | MR
[22] , Locally testable languages. J. Computer and System Sciences 6 (1972) 151-167. | Zbl | MR
[23] , Locally testable semigroups. Semigroup Forum 5 (1973) 216-227. | Zbl | MR
[24] , Opérations implicites et variétés de semigroupes finis. Doctoral thesis, University of Paris VII, Paris (1993).






