@article{ITA_1993__27_4_341_0,
author = {Pallo, J. M.},
title = {An algorithm to compute the m\"obius function of the rotation lattice of binary trees},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {341--348},
year = {1993},
publisher = {EDP Sciences},
volume = {27},
number = {4},
mrnumber = {1238055},
zbl = {0779.68066},
language = {en},
url = {https://www.numdam.org/item/ITA_1993__27_4_341_0/}
}
TY - JOUR AU - Pallo, J. M. TI - An algorithm to compute the möbius function of the rotation lattice of binary trees JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1993 SP - 341 EP - 348 VL - 27 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/item/ITA_1993__27_4_341_0/ LA - en ID - ITA_1993__27_4_341_0 ER -
%0 Journal Article %A Pallo, J. M. %T An algorithm to compute the möbius function of the rotation lattice of binary trees %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1993 %P 341-348 %V 27 %N 4 %I EDP Sciences %U https://www.numdam.org/item/ITA_1993__27_4_341_0/ %G en %F ITA_1993__27_4_341_0
Pallo, J. M. An algorithm to compute the möbius function of the rotation lattice of binary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 27 (1993) no. 4, pp. 341-348. https://www.numdam.org/item/ITA_1993__27_4_341_0/
1. and , Two families of Newman lattices, to appear. | Zbl | MR
2. et , A-transformation dans les arbres n-aires, Discrete Math., 45, 1983, pp. 153-163. | Zbl | MR
3. and , Les treillis pseudocomplémentés finis, Europ. J. Combinatorics, 13, 1992, pp.89-107. | Zbl | MR
4. , An introduction to probability theory and its applications, John Wiley, New-York, 1957. | Zbl | MR
5. and , Problèmes d'associativité : une structure de treillis fini induite par une loi demi-associative, J. Combinat. Theory, 2, 1967, pp. 215-242. | Zbl | MR
6. , General lattice theory, Academic Press, New-York, 1978. | Zbl | MR
7. , The Möbius function of a partially ordered set, in: Ordered sets, I. Rival éd., D. Reidel Publishing Company, 1982, pp. 555-581. | Zbl | MR
8. , The Eulerian functions of a group, Quart. J. Math. Oxford Ser., 1936, pp. 134-151. | JFM
9. and , Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinat, Theory, (A) 13, 1972, pp. 7-13. | Zbl | MR
10. , The factorization and representation of lattices, Trans. Amer. Math. Soc., 203, 1975, pp. 185-200. | Zbl | MR
11. , Enumeration, ranking and unranking binary trees, Computer J., 29, 1986, pp. 171-175. | Zbl | MR
12. , On the rotation distance in the lattice of binary trees, Inform. Process. Lett., 25, 1987, pp. 369-373. | MR
13. , Some properties of the rotation lattice of binary trees, Computer J., 31, 1988, pp. 564-565. | Zbl | MR
14. , A distance metric on binary trees using lattice-theoretic measures, Inform. Process. Lett., 34, 1990, pp. 113-116. | Zbl | MR
15. and , A Hamilton path in the rotation lattice of binary trees, Congr. Numer., 59, 1987, pp. 313-318. | Zbl | MR
16. , On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie, 2, 1964, pp. 340-368 | Zbl | MR
17. , and , Rotation distance, triangulations and hyperbolic geometry, Journal of the American Mathematical Society, 1988, pp. 647-681. | Zbl | MR





