
INFORMATIQUE THÉORIQUE ET APPLICATIONS

JOOST ENGELFRIET

GEORGE LEIH
Complexity of boundary graph languages
Informatique théorique et applications, tome 24, no 3 (1990),
p. 267-274
<http://www.numdam.org/item?id=ITA_1990__24_3_267_0>

© AFCET, 1990, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1990__24_3_267_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol 24, n° 3, 1990, p. 267 à 274)

COMPLEXITY OF BOUIMDARY G R A P H L A N G U A G E S <*)

by Joost ENGELFRÏET (*) and George LEÏH (*' 2)

Communicated by P. VAN EMDE BOAS

Abstract, - Connected graph languages of bounded degree that are generaled by boundary eNCE
grammars are in LOG(CF), Le,, they are log-spaee reducible to a context-free string language.

Résumé, - Les langages de graphes connexes et de degré borné qui sont engendrés par des
grammaires de type « boundary eNCE » sont dans LOG (CE), c'est-à-dire qu'il est possible de
réduire ces langages à un langage algébrique en espace logarithmique.

NLC and NCE graph grammars ([7, 8]) haye been investîgated intensîvely,
They have been shown to be adequate for defining sets of (undirected, node
labeied) graphs in essentîally the same way as context-free string grammars
can be used to defme sets of strings. As a straightforward generalîzation of
NLC and NCE graph grammars, eNLC and eNCE grammars can be used to
generate sets of graphs which are edge labeied as well (seef e.g.; [10, 9, 2, 3,
4]; the e stands for edge labeied, NLC for Node Label Controlled, and NCE
for Neighbourhood Controlled Embedding).

One of the most interesting restrictions on NLC graph grammars, proposed
in the lîterature, is the "'boundary" restriction: edges between nonterminal
nodes are not allowed. These boundary NLC (or B-NLC) grammars were
întroduced in [12]. Due to the boundary restriction B-NLC grammars are
evçn doser to context-free grammars than arbitrary NLC grammars, and
thus have nieer propertïes with respect to, e, g., normal forms, decidabîlîty,
closure proporties, and complexity of récognition, Recently we have started

(*) Received May 1988, revised,
C) Department of Computer Science, University of Leiden, P.O. Box 9512, 2300 RA Leiden,

The Netherlands,
(2) The work of this author was conducted as part of the PRISMA project, a joint effort

with Philips Research, partiaily supported by the Dutch "Stimuleringsprojectteam informaticaon-
derzoek" (SPIN).

Informatique théorique et Applicatîons/Theoretieal Informaties and Applications
0988-3754/90/03 267 08/$2.80/© AFCET-Gauthier-Villars

268 J. ENGELFRIET, G. LEIH

to investigate the boundary eNCE (or B-eNCE) graph grammars, of which
the B-NLC grammars are a special case (see [4]). In our expérience these
B-eNCE grammars enjoy all the nice properties of the B-NLC grammars,
whereas they are much easier to handle and understand (mainly because of
the way edge labels may be manipulated by eNCE grammars). Moreover, it
is shown in [4] that some additional results, such as a Chomsky and a
Greibach normal form, hold for B-eNCE grammars which cannot be obtained
for B-NLC grammars.

In this note we consider the complexity of recognizing B-eNCE languages.
It was shown in [12] that connected B-NLC languages of bounded degree
are in P, Le., can be recognized in polynomial time (and the same holds for
node relabelings of such languages). We generalize and improve this result
by showing that connected B-eNCE languages of bounded degree are in
LOG (CF), i.e., are log-space reducible to a context-free language. Such a
result can be used as a quick method for showing that spécifie sets of graphs
areinLOG(CiO,

Independently, Lautemann shows in [11] a similar, but stronger, result for
a related type of graph grammar. He shows that a particular subset of the
hyperedge replacement languages is in LOG (CF). It follows from the results
of [5] that this subset (properly) contains the set of connected B-eNCE
languages of bounded degree.

We consider undirected node and edge labeled graphs without loops;
multiple edges are allowed, but not with the same label. Formally, a graph is
a System H=(V, E, Z, F, cp), where V is the fïnite set of nodes,
E^{{v, A,, w}|t?, weV, v^w, XeT} is the set of labeled edges, S is the
alphabet of node labels, F is the alphabet of edge labels, and <p : F-»£ is
the node labeling function. We use GRX r to dénote the set of all graphs
with node label alphabet £ and edge label alphabet F. The components of
graph H will be indicated by VH, EH, Sfl, FH, and <pH. A graph language is
a set of graphs. A graph language L is connected if all graphs in L are
connected, and it is of bounded degree if there is a d such that each node in
each graph of L has degree ^d (i. e., has at most d incident edges).

An eNCE grammar is a System G~(L, A, F, Q, P, S), where S is the
alphabet of node labels, A <= S is the alphabet of terminal node labels (éléments
of 2-A are called nonterminal node labels), F is the alphabet of edge labels,
Q g F is the alphabet of final edge labels, P is the finite set of productions,
and SeX-A is the initial non terminal. A production neP is of the form
n = (X, D, B), where Xe2-A is the lefixhand side of n [denoted lhst(n)],

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY OF BOUNDARY GRAPH LANGUAGES 269

D e GRLt r is the right-hand side of n [denoted rhs (71)], and ^ g F ^ x T x r x Z
is the embedding relation of TU [denoted B(n)].

A production n = (X, D, B) is applied to a nonterminal node v in SL graph
HeGR^ r , where <pH(v) = X, as follows. First, v is removed from H, together
with all edges incident with v. Next, D is added to the remainder of H, in
place of v. Finally, D is embedded in the remainder of H by adding edges
between nodes in VD and former neighbours of v in H as follows. If xe VD

and y e VH— {v}, then an edge labeled \i is added between x and y if and
only if there was an edge between v and y labeled X in H, and (x, X9 \i, <pH(y))
is in B. Thus, x inherits some of the edges that connect v to its neighnours,
possibly with a different label. The result of this transformation is a graph K
in GRZ r.H =>(V) n)Kor just H=>Kwi\\ be used to dénote the transformation
(for a more formai définition ^e[4]). The language gênerated by G is
L(G)—{HeGRA n \S=>* H} (where S is a graph with just one node labeled
5, and=>* is the transitive and reflexive closure of=>). Thus, L{G) contains
ail graphs derivable from S which have only terminal nodes and final edges.
The class of all languages generated by eNCE grammars is denoted eNCE.

Next, we introducé the subclass of eNCE grammars we are interested in
in this paper. Let G = (L, A, T, Q, P, S) be an eNCE grammar. G is a B-
eNCE grammar (B for boundary) if, for every n e P, rhs (n) contains no edges
between nonterminal nodes. The class of all languages generated by a
B-eNCE grammar is denoted B-eNCE. It is easy to see that in sentential
forms of B-eNCE grammars no edges can appear between nonterminal nodes.
Therefore, the order of rewriting two nonterminal nodes in a sentential form
of a B-eNCE grammar does not influence the result (in contrast to arbitrary
eNCE grammars). This observation is important to be able to understand
the proof of the result of this note.

In order to prove the LOG (CF) result, it is convenient to use the following
normal forms. An eNCE grammar G = (2, A, F, O, P, S) is in Greibach nor-
mal form if, for every production neP, rhs(n) contains exactly one terminal
node. G is neighbourhood preserving if for ail H and K such that
5=>*H=>(X n)K in G, if {x, X, y}eEH, then there is a node ze Vrhs{n} and a
\ieT such that (z, X, [i, <pH(y))eB(n). Thus, ail edges incident with x are
"used" to establish a new edge in K, Using the results in the literature, it
can be shown that there is a neighbourhood preserving B-eNCE grammar in
Greibach. normal form for each B-eNCE language (the neighbourhood pre-
serving result is shown in [5], the Greibach résuit in [4]; it is not difficult to
see that the proof in [5] preserves the Greibach property).

vol. 24, n° 3, 1990

270 J. ENGELFRIET, G. LEIH

We are now ready to prove that connected B-eNCE languages of bounded
degree are in LOG(CF). Since LOG(CF)^P this improves the result in [12]
for B-NLC languages. Moreover, since every context-free language can be
generaled by a B-eNCE grammar (coding a string as an edge labeled chain),
this is the best possible result, using log-space réductions. Our proof is based
on the fact that LOG (CF) is the class of languages accepted by alternating
Turing machines that use logarithmic space and polynomial tree-size
([13, 14]). It also uses the recent result that NSPACE (logTz) is closed under
complement ([6, 15]).

THEOREM: If Le B-eNCE is a connected graph language of bounded degree,
then LeLOG(CF).

Proof: Let d^l be such that each graph in L has degree ^ J . Let
G — (E, A, F, Q, P,S) be a neighbourhood preserving B-eNCE grammar in
Greibach normal form with L(G) = L. Assume that S does not appear as
label in the right-hand side of a production. Let HeGRA fi be a connected
graph (this can be checked in nondeterministic O(logn) space, where n is the
length of H when encoded as a string in the usual way). We give an
algorithm for an alternating Turing machine that checks in O (log n) space and
polynomial tree-size that HeL. The algorithm consists of one recursive
boolean function, invoked as Parse (5, 0 , 0) . It is a generaüzed version of
Algorithm 20 in [2], which in turn is based on Algorithm 3.5 of [1]. The
statement "CHECK THATa" is syntactic sugar for "IF NOT a THEN
RETURN (FALSE) FI".

1. FONCTION Parse (XeX-A, Crit-edgesg VmxQ x VH, Boundary s VH
x r) : Booleaa;

BEGIN
2. CHOOSE DO6 VB aad neP;
X LET k= # Vrbsi^-1, and V^^ { }

4. CHECK THAT Mis{*)=X AND q
5. I F X ^ S I H E N
6. CHECK THAT there is a {«, l, v)GCni<edges such tiaat there is a path

between v and vQ ia H only through edges not in Crit-edges
FI;

7. CHECK THAT j

= {(«, m ^
B. Crit-edges : = Crit-edges

- {(u, |i, w^ïeCritnedges |«e

9. ÏF&^ITBEN
10. CHECK THAT #Crit-e<fees ^^;
11. CHOOSE a partition { Pu Pp . . . , Pk } of Crit edges;
12. FOR eacîi i, / e{ ï, 2, , à f witii J#J 3 and each (w, X, ̂ e i ^ and (x, ji

Informatique théorique et Appîicâtions/Theoretical Informaties and Applications

COMPLEXITY OF BOUNDARY GRAPH LANGUAGES 271

13.

14.
15.

16.

17.

CHECK THAT there is no path between v and y in H only through edges
not in Crit-edges

OD;
FOR each i e { l , 2, . . .,fc}DO

Boundary£: = {(«, \i)\3\eT:(u, X)eBoundary, (Ç., X, n, cpH(w))e^<X>}
U (K) | { U 5 } £ }

CHECK THAT Parse
OD

P£, Boundary,)

ELSE CHECK THAT Crit-edges- 0
FI;

18. RETURN (TRUE)
END.

The idea behind this algorithm is that a dérivation for if in G is guessed.
For each nonterminal node Ç that is generated during this dérivation, a
process is created (16) that checks a subgraph D of H by applying function
Parse, with an appropriate set of parameters (1 and 16). Since D itself cannot
be encoded in O(logrc) space, we take the following parameters: X is the
label of the nonterminal node £, that has to generate subgraph D, Crit-edges
(critical edges) is the set of all tuples (w, \i, v) for which {w, JLX3 v}eEH,
ue VH-VD, and ve VD (since H is connected, this set uniquely détermines D),
and Boundary is the set of all tuples (M, X) such that ue VH-VD is connected
to £ by a >--edge. A process, applying the function Parse, accepts if and only
if RETURN (TRUE) (18) is executed. Otherwise it rejects (one of the checks
failed).

The process guesses a node v0 e VH and a production n e P that has to
generate v0 (see 2 to 4; since G is in Greibach normal form, each production
générâtes one terminal node). It is checked that v0 is in D (this can be done

as in 6 since H is connected, see Fig, I; this trick was first used in [1]; note
that only the first process has X=S in 5, see our assumption). In 7 it is
checked that all edges between nodes outside D and v0 are established, and
no more. These edges are thrown out of Crit-edges in 8, and the remaining
edges incident with v0 in H now get critical. If there are k}>l nonterminal
nodes in rhs(n) (see 9), then k new processes have to be created. It is guessed

vol. 24, n° 3, 1990

272 J. ENGELFRIET, G. LEIH

Figure 2

in 11 which nonterminal node has to generate which part of the remainder
of D, by partitioning Crit-edges into k parts P1 to Pk (see Fig, 2, where k = 3
and #Pi — i). This partitioning is possible, see 10. 12-13 ensures that the
processes work on disconnected parts of this remaining graph (we now know
that Pt détermines a unique subgraph of D). In 15 the set of edges incident
with ^ is defined. We see that the k new processes, which start working in
parallel, are created in 16. If all these subprocesses return true, then the
process accepts (18). If, in 17, no nonterminal node is left then it is checked
that Crit-edges = 0 ; the connectedness of H ensures in this case that the
process is ready generating D.

Finally we discuss the log-space and polynomial tree-size realization of
the algorithm. We fïrst consider space. It is clear that 6 can be done in
NSPACE (log ri), and 13 in co-NSPACE (log ri), and hence also in
NSPACE (log «) [6, 15]. Second, we show that the parameters take O (log«)
space at most. It suffices to prove that #Boundary and # Crit-edges are
bounded by a constant. We claim that #Boundary^ # F . #A.dand #Crit-
edges^ # F . #A.cP (if HeL and the dérivation is guessed correctly). Since
G is neighbourhood preserving, each edge indicated by a tuple in Boundary
(thus incident with Q will be used to establish an edge in H. Hence, there
may not be an edge label X and a node label b such that there are more
than d tuples(w, X) in Boundary with ^>H(u) — b (in fact, all these u's would
finally get connected to the same node of H, which then would have
degree >d). Thus, the bound on #Boundary is correct. Similarly, for a fixed
ue VH, there can be at most d tuples (w, X, v) in Crit-edges. Since such an
edge can only be established if u also appears in Boundary (/. e., is connected

Informatique théorique et Applications/Theoretical Informaties and Applications

COMPLEXITY OF BOUNDARY GRAPH LANGUAGES 2 7 3

to £), the bound on #Boundary implies the bound on #Crit-edges. Thus,
the amount of space given to the processes sufïices. Next we consider the
tree-size. Clearly the tree of recursive calls of the algorithm has the same size
as the guessed dérivation tree, which is of linear size since G is in Greibach
normal form. It now suffices to observe that each recursive call takes (nonde-
terministic) polynomial time: this is because it works in NSPACE (logn), as
discussed before. Thus the tree-size is polynomial. •

Finally, we wish to mention that it easily follows from the proof above
that connected linear eNCE languages of bounded degree are in
NSPACE (log ri) (a linear grammar has the property that the right-hand side
of each production contains at most one nonterminal node, see [2]; thus,
linear grammars are a special type of boundary grammars). If, namely, G in
the proof is linear, then k is at most one, and hence there are no concurrent
processes. This was first proved in [2].

REFERENCES

1. IJ. J. AALBERSBERG, J. ENGELFRIET and G. ROZENBERG, The Complexity of Regular
DNLC Graph Languages, Report 86-03, Leiden, April 1986, JCSS (to appear).

2. J. ENGELFRIET and G. LEIH, Linear Graph Grammars: Power and Complexity,
Information and Computation, 81, 1989, pp. 88-121.

3. J. ENGELFRIET, G. LEIH and G. ROZENBERG, Apex Graph Grammars, in Graph-
Grammars and their Application to Computer Science, H. EHRIG, M. NAGL,
G. ROZENBERG and A. ROSENFELD Eds., Lecture Notes in Computer Science, 291,
Springer-Verlag, Berlin, 1987, pp. 167-185.

4. J. ENGELFRIET, G. LEIH and E. WELZL, Boundary Graph Grammars with Dynamic
Edge Relabeling, Report 87-30, Leiden, December 1987, J. Comput. System Sci.
(to appear).

5. J. ENGELFRIET and G. ROZENBERG, A Comparison of Boundary Graph Grammars
and Context-Free Hypergraph Grammars, Information and Computation, 84, 1990,
pp. 163-206.

6. N. IMMERMANN, Nonde terminis tic Space is Closed Under Complement, Yale Univer-
sity, Technical Report, YALEU/DCS/TR 552, July 1987.

7. D. JANSSENS and G. ROZENBERG, On the Structure of Node-Label-Controlled Graph
Languages, Information Sciences, 20, 1980, pp. 191-216.

8. D. JANSSENS and G. ROZENBERG, Graph Grammars with Neighbourhood-Controlled
Embedding, Theor. Comp. Science, 21, 1982, pp. 55-74.

9. D. JANSSENS, G. ROZENBERG and R. VERRAEDT, On Sequential and Parallel Node-
Rewriting Graph Grammars, Computer Graphics and Image Processing, 18, 1982,
pp. 279-304.

10. M. KAUL, Syntaxanalyse von Graphen bei Prâzedenz-Graph-Grammatiken, Disser-
tation, Universitât Osnabrück, 1985.

vol. 24, n° 3, 1990

2 7 4 J. ENGELFRIET, G. LEIH

11. C. LAUTEMANN, Efficiënt Algorithms on Context-Free Graph Languages, in Proc.
15th I.C.A.L.P., T. LEPISTÖ and À. SALOMMA Eds., Lecture Notes in Computer
Science, 317, Springer-Verlag, Berlin, 1988, pp. 362-378.

12. G. ROZENBERG and E. WELZL, Boundary NLC Graph Grammars-Basic Définitions,
Normal Forms, and Complexity, Inform. Contr., Vol. 69, 1986, pp. 136-167.

13. W. L. Ruzzo, Tree-Size Bounded Aïternation, J.C.S.S., 21, 1980, pp. 218-235.
14. I. H. SUDBOROUGH, On the Tape Complexity of Deterministic Context-Free Lan-

guages, J.A.C.M., Vol. 25, 1978, pp. 405-414.
15. R. SZELEPCSÉNYI, The Method of Forcing for Nondeterministic Automàta, Bulletin

of the E.A.T.C.S., Vol. 33, 1987, pp. 96-99.
16. E. WELZL, Boundary NLC and Partition Controîled Graph Gr ammars, in "Graph-

Grammars and their Application to Computer Science", H. EHRIG M. NAGL,
G. ROZENBERG and A. ROSENFELD Eds., Lecture Notes in Computer Science, 291,
Springer-Verlag, Berlin, 1987, pp. 593-609.

Informatique théorique et Applications/Theoretical Informaties and Applications

