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Vol. U-l (2010)

" HAUS DORFF DB TANCE" VIA CON1CAL COCO MP LETTON

by Isar STUBBE*

À Francis Borceux, qui m 'a tant appris et qui m'apprend toujours

Résumé. Dans le contexte des catégories enrichies dans un quantaloïde, nous ex­
pliquons comment toute classe de poids saturée définit, et est définie par, une unique 
sous-KZ-doctrine pleine de la doctrine pour la cocomplétion libre. Les KZ-doctrines 
qui sont des sous-KZ-doctrines pleines de la doctrine pour la cocomplétion libre, sont 
caractérisées par deux conditions simples de “pleine fidélité”. Les poids coniques 
forment une classe saturée, et la KZ-doctrine correspondante est exactement (la 
généralisation aux catégories enrichies dans un quantaloïde de) la doctrine de Haus- 
dorff de [Akhvlediani et al., 2009].
Abstract. In the context of quantaloid-enriched categories, we explain how each 
saturated class of weights defines, and is defined by, an essentially unique full sub- 
KZ-doctrine of the free cocompletion KZ-doctrine. The KZ-doctrines which arise 
as full sub-KZ-doctrines of the free cocompletion, are characterised by two sim­
ple “fully faithfulness” conditions. Conical weights form a saturated class, and the 
corresponding KZ-doctrine is precisely (the generalisation to quantaloid-enriched 
categories of) the Hausdorff doctrine of [Akhvlediani et al., 2009].
Keywords. Enriched category, cocompletion, KZ-doctrine, Hausdorff distance 
Mathematics Subject Classification (2010). 18D20, 18A35, 18C20

1. Introduction

At the meeting on “Categories in Algebra, Geometry and Logic” honouring Fran­
cis Borceux and Dominique Bourn in Brussels on 10-11 October 2008, Walter 
Tholen gave a talk entitled “On the categorical meaning of Hausdorff and Gromov 
distances”, reporting on joint work with Andrei Akhvlediani and Maria Manuel 
Clementino [2009]. The term ‘Hausdorff distance’ in his title refers to the follow­
ing construction: if (X , d) is a metric space and 5, T  Ç I ,  then

6(S,T)  :=  V  / \ d ( s , t )
seSteT

defines a (generalised) metric on the set of subsets of X.  But Bill Lawvere [1973] 
showed that metric spaces are examples of enriched categories, so one can aim at
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suitably generalising this ‘Hausdorff distance’. Tholen and his co-workers achieved 
this for categories enriched in a commutative quantale V. In particular they devise 
a KZ-doctrine on the category of V-categories, whose algebras -  in the case of 
metric spaces -  are exactly the sets of subsets of metric spaces, equipped with the 
Hausdorff distance.

We shall argue that the notion of Hausdorff distance can be developed for quant- 
aloid-enriched categories too, using enriched colimits as main tool. In fact, very 
much in line with the work of [Albert and Kelly, 1988; Kelly and Schmitt, 2005; 
Schmitt, 2006] on cocompletions of categories enriched in a symmetric monoidal 
category and the work of [Kock, 1995] on the abstraction of cocompletion pro­
cesses, we shall see that, for quantaloid-enriched categories, each saturated class 
of weights defines, and is defined by, an essentially unique KZ-doctrine. The KZ- 
doctrines that arise in this manner are the full sub-KZ-doctrines of the free cocom­
pletion KZ-doctrine, and they can be characterised with two simple “fully faith­
fulness” conditions. As an application, we find that the conical weights form a 
saturated class and the corresponding KZ-doctrine is precisely (the generalisation 
to quantaloid-enriched categories of) the Hausdorff doctrine of [Akhvlediani et a l , 
2009].

In this paper we do not speak of ‘Gromov distances’, that other metric notion 
that Akhvlediani, Clementino and Tholen [2009] refer to. As they analyse, Gromov 
distance is necessarily built up from symmetrised Hausdorff distance; and because 
their base quantale V is commutative, they can indeed extend this notion too to 
V-enriched categories. More generally however, symmetrisation for quantaloid- 
enriched categories makes sense when that quantaloid is involutive. Preliminary 
computations indicate that ‘Gromov distance’ ought to exist on this level of gener­
ality, but quickly got too long to include them in this paper: so we intend to work 
this out in a sequel.

2. Preliminaries 

2.1 Quantaloids

A quantaloid is a category enriched in the monoidal category Sup of complete lat­
tices (also called sup-lattices) and supremum preserving functions (sup-morphisms). 
A quantaloid with one object, i.e. a monoid in Sup, is a quantale. Standard refer­
ences include [Rosenthal, 1996; Paseka and Rosicky, 2000] .

Viewing Q as a locally ordered category, the 2-categorical notion of adjunction 
in Q refers to a pair of arrows, say / :  A —> B  and g: B  —> A, such that 1 a  < 9 ° f  
and f o g  < 1B (in which case /  is left adjoint to g, and g is right adjoint to / ,  
denoted /  H g).

- 5 2 -
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Given arrows
/

A ----------------->B

^h\ y / i
C

in a quantaloid Q, there are adjunctions between sup-lattices as follows:

- ° f  g ° -
Q(B,C) Q (i4,C), Q(A,B) Q(A,C),

{ /> -}  [ff,-]

{ - * }
Q ( i 4 , S )  Q ( £ , C ) op.

[ - h ]

The arrow [<7 , ft] is called the lifting of h trough g, whereas { /, h} is the extension 
of h through / .  Of course, every left adjoint preserves suprema, and every right 
adjoint preserves infima. For later reference, we record some straightforward facts:

Lemma 2.1 I f  g: B  —> C in a quantaloid has a right adjoint g*, then [g, h] =  g* o 
h and therefore [g, —] also preserves suprema. Similarly, i f  f :  A —>B has a left 
adjoint f\ then { /, h} =  h o f\ and thus { /, —} preserves suprema.

Lemma 2.2 For any commutative diagram

A B C

X\ i  Ns\  y / ' i
D ---------:------- >E

J

in a quantaloid, we have that [z, h] o [<7 , f ]  < [¿,j o /]. I f  all these arrows are left 
adjointsy and g moreover satisfies g o g* =  1D, then [z, h\ o \g, f ]  =  [ i , j  o /].

Lemma 2.3 I f  f :  A —> B in a quantaloid has a right adjoint /*  such that moreover 
/*  0  /  =  1a , then [ f o x , f o y ]  =  [x, y\for any x, y : X^ XA.

- 5 3 -
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2.2 Quantaloid-enriched categories

From now on Q denotes a small quantaloid. Viewing Q as a (locally ordered) 
bicategory, it makes perfect sense to consider categories enriched in Q. Bicategory- 
enriched categories were invented at the same time as bicategories by Jean Benabou 
[1967], and further developed by Ross Street [1981, 1983]. Bob Walters [1981] 
particularly used quantaloid-enriched categories in connection with sheaf theory. 
Here we shall stick to the notational conventions of [Stubbe, 2005], and refer to that 
paper for additional details, examples and references.

A Q-category A consists of a set of objects Ao, a type function t: Ao —> Qo> and 
Q-arrows A (a \a ) : ta— >ta!\ these must satisfy identity and composition axioms, 
namely:

1 ta < A (a, a) and A (a", a') o A (a', a) <  A (a", a).

A Q-functor F: A — is a type-preserving object map a h-> Fa satisfying the 
functoriality axiom:

A(a;,a) < M(Fa\Fa).

And a Q-distributor <1>: A-©^B is a matrix of Q-arrows 3>(b, a): ta —>tb, indexed 
by all couples of objects of A and B, satisfying two action axioms:

$ (& ,a ')o A (a ',a )< $ (6 ,a )  and B(6, bf) o $(&',&) < $(6, a).

Composition of functors is obvious; that of distributors is done with a “matrix” 
multiplication: the composite ^  ® A-e-^C of 4>: A-e-»B and B -e*C  has as 
elements

('3> ® $ )(c ,a) =  \ /  \&(c,&) o

Moreover, the elementwise supremum of parallel distributors (4>*: A-e-^B)iej  gives 
a distributor \Ji A-e->>B, and it is easily checked that we obtain a (large) quan­
taloid Dist(Q) of Q-categories and distributors. Now Dist(Q) is a 2-category, so 
we can speak of adjoint distributors. In fact, any functor F: A — determines an 
adjoint pair of distributors:

B(—, F - )

A (1)

Therefore we can sensibly order parallel functors F, C: A —> IB by putting F  < G 
whenever < B(—,G~)  (or equivalently, B(G—, —) < B( F — )) in
Dist(Q). Doing so, we get a locally ordered category Cat(Q) of Q-categories and 
functors, together with a 2-functor

i: Cat(Q) — > Dist(Q): ( F : A —* b )  m- ( b ( - , F - ) : A - » > b ) .  (2)

I. STUBBE - HAUSDORFF DISTANCE VIA CONICAL COCOMPLETION
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(The local order in Cat(Q) need not be anti-symmetric, i.e. it is not a partial order 
but rather a preorder, which we prefer to call simply an order.)

This is the starting point for the theory of quantaloid-enriched categories, in­
cluding such notions as:

- fully faithful functor: an F: A — for which A (a', a) =  B (F a ', F a), or 
alternatively, for which the unit of the adjunction in (1) is an equality,

- adjoint pair: a pair F: A — >M, G: B —> A for which 1a < G o F  and also 
F  o G < 1®, or alternatively, for which B (F —, —) =  A(—, G—),

- equivalence: an F: A — which are fully faithful and essentially suijective 
on objects, or alternatively, for which there exists a G: B —>A such that 1a =  
G o F  and F  o G =  1®,

- left Kan extension: given F: A — and G: A —*>C, the left Kan extension 
of F  through G, written (F, G): C —>M, is the smallest such functor satisfy­
ing F  < (F, G) o G,

and so on. In the next subsection we shall recall the more elaborate notions of 
presheaves, weighted colimits and cocompletions.

2.3 Presheaves and free cocompletion

If X  is an object of Q, then we write *x for the one-object Q-category, whose 
single object * is of type X 9 and whose single hom-arrow is lx -

Given a Q-category A, we now define a new Q-category V(A) as follows:

- objects: (V(A))0 =  {0: *x ^h>A | X  e Qo},

- types: t{(j>) — X  for (j>: *x -e-> A,

- hom-arrows: 'P(A)(/0, <j>) =  (single element of) the lifting [^, </>] in Dist(Q).

Its objects are (contravariant) presheaves on A, and V  (A) itself is the presheaf 
category on A.

The presheaf category V(A) classifies distributors with codomain A: for any 
B there is a bijection between Dist(Q)(B, A) and Cat(Q)(B,7*(A)), which asso­
ciates to any distributor 3>:B-e->A the functor > V B —>V(A): b »->• $ ( —,6), and 
conversely associates to any functor F : B —> V(A) the distributor $ f ’ B -©-> A with 
elements >̂jp(a,6) =  (F6)(a). In particular is there a functor, Ya: A — >V(A), 
that corresponds with the identity distributor A: A-e-» A: the elements in the image 
of Ya are the representable presheaves on A, that is to say, for each a e A we 
have A(—, a): *ia -e^ A. Because such a representable presheaf is a left adjoint in 
Dist(Q), with right adjoint A(a, —), we can verify that

V(A)(YA(a), 4>) =  [A(—, a), 0] =  A (a, - )  ® <¡> = <j>(a).

- 5 5 -
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This result is known as Yoneda’s Lemma, and implies that Y&: A — >V(A) is a 
fully faithful functor, called the Yoneda em bedding of A into V(A).

By construction there is a 2-functor

V0: Dist(Q) — >Cat(Q): (<&: A-e*B) ($  0  V(A) — ►7>(B)),

which is easily seen to preserve local suprema. Composing this with the one in (2) 
we define two more 2-functors:

Dist(Q) Vl > Dist(Q)

i  * (3)

Cat(Q) v  > Cat(Q)

In fact, V\ is a Sup-functor (a.k.a. a homomorphism of quantaloids). Later on we 
shall encounter these functors again.

For a distributor 4>:A-e^B and a functor F: B —»C between Q-categories, 
the ^-w eighted colim it o f F  is a functor K: A —>C such that [<I>,B(F—, —)] =  
C (K —, —). Whenever a colimit exists, it is essentially unique; therefore the nota­
tion colim(<I>, F): A —>C makes sense. These diagrams picture the situation:

F  C (F —, —)
B ---------- B —©----------------------------C

colira(<t>, F ) * °  C(F—, —)] =  C(colim($, F ) —, —)

A A

A functor G: C — >C' is said to preserve colim(<I>, F)  if G o colim(<I>, F)  is the 
^-weighted colimit of G o F. A Q-category admitting all possible colimits, is 
cocomplete, and a functor which preserves all colimits which exist in its domain, 
is cocontinuous. (There are, of course, the dual notions of limit, completeness and 
continuity. We shall only use colimits in this paper, but it is a matter of fact that a 
Q-category is complete if and only if it is cocomplete [Stubbe, 2005, Proposition 
5.10].)

For two functors F: A — and G: A — ►C, we can consider the C(G—, — )- 
weighted colimit of F. Whenever it exists, it is (F, G):C— >B, the left Kan exten­
sion of F  through G\ but not every left Kan extension need to be such a colimit. 
Therefore we speak of a pointwise left Kan extension in this case.

I. STUBBE - HAUSDORFF DISTANCE VIA CONICAL COCOMPLETION
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Any presheaf category V(C) is cocomplete, as follows from its classifying 
property: given a distributor 3>: A-e-»B and a functor F: B — >V(C), consider the 
unique distributor B — >C corresponding with F; now in turn the composition 

® A -e^C  corresponds with a unique functor A — >V(C)\ the latter
is colim(3>, F).

In fact, the 2-functor
V: Cat(Q) — ^Cat(Q)

is the K ock-Zoberlein-doctrine1 for free cocompletion; the components of its 
multiplication M: V  o V  = > P  and its unit Y : lcat(Q) =>'P  are

c o lim (- ,lP(c)) :P (P (C ))—>7>(C) and yc :C —*P(C).

This means in particular that (P, M, F ) is a monad on Cat(Q), and a Q-category C 
is cocomplete if and only if it is a 'P-algebra, if and only if Yc: C —>V(C) admits 
a left adjoint in Cat(Q).

2.4 Full sub-KZ-doctrines o f the free cocom pletion doctrine

The following observation will be useful in a later subsection.

Proposition 2.4 Suppose that T : Cat(Q) — > Cat(Q) is a 2-Junctor and that

V

Cat(Q) p  Cat(Q)

T

is a 2-natural transformation, with all components £&’• T(A) —>V(A) fully faithful 
functors, such that there are (necessarily essentially unique) factorisations

V o V
M

£ * £ 1Cat(Q)

T o T >r
T]

1A Kock-Zoberlein-doctrine (or KZ-doctrine, for short) T  on a locally ordered category /C is a 
2 -functor T : /C —  ̂fC for which there are a multiplication /x: T  o T  = >  T  and a unit 77: 1 /c = >  T  
making (T , /1 , 77) a 2 -monad, and satisfying moreover the “KZ-inequation”: T(t]k ) <  *7t ( k )  for all 
objects K  of /C. The notion was invented independently by Volker Zoberlein [1976] and Anders Kock 
[1972] in the more general setting of 2-categories. We refer to [Kock, 1995] for all details.

> v
V

£

-57  -
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Then (T, //, rj) is a sub-2-monad of (V, M, Y), and is a KZ-doctrine. We call the 
pair (T, e) a full sub-KZ-doctrine ofV.

Proof: First note that, because each T(A) — >V(A) is fully faithful, for each
F, G :C —>T(A),

£A° F  < £a ° G = >  F  < G,

thus in particular is (essentially) a monomorphism in Cat(Q): i f  £ a ° F  =  
€a ° G then F =  G. Therefore we can regard s: T  = > V  as a subobject of the 
monoid (V ,M ,Y )  in the monoidal category of endo-2-functors on Cat(Q). The 
factorisations of M  and Y  then say precisely that (T, //, rj) is a submonoid, i.e. a 
2-monad on Cat(Q) too.

But V: Cat(Q) —> Cat(Q) maps fully faithful functors to fully faithful functors, 
as can be seen by applying Lemma 2.3 to the left adjoint B(—, F —): A-e+B in 
Dist(Q), for any given fully faithful F: A — >M. Therefore each

(£*£)a :T (T (A ))—>V(V(A))

is fully faithful: for (s * e)& =  V(sa) ° £ta and by hypothesis both and eq~A are 
fully faithful. The commutative diagrams

V(A)
nY&)

>V{V{ A))

A

T(Ya)

n a) T(va )

V{ A) »

YT(A) \

T(V( A))

\

(e *  £ )a

T ( sa ) 

> T (T ( A))

£A T(V{A)) (£ * e )A

T ( ê a )  J
T(A)

rlT (A )
*T (T ( A))

thus imply, together with the KZ-inequation for P , the KZ-inequation for T. □

Some remarks can be made about the previous Proposition. Firstly, about the 
fully faithfulness of the components of e: T  =>V.  In any locally ordered category 
/C one defines an arrow / :  A —>B to be representably fully faithful when, for any 
object X  of /C, the order-preserving function

/C(/, -):JC(X, A )— >K{X, B ) : x ^  f o x

- 5 8 -
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is order-reflecting -  that is to say, /C(/, —) is a fully faithful functor between or­
dered sets viewed as categories -  and therefore /  is also essentially a monomor­
phism in /C. But the converse need not hold, and indeed does not hold in JC =  
Cat(Q): not every monomorphism in Cat(Q) is representably fully faithful, and 
not every representably fully faithful functor is fully faithful. Because the 2-functor 
V: Cat(Q) —^Cat(Q) preserves representable fully faithfulness as well, the above 
Proposition still holds (with the same proof) when the components of e: T  = >  V  are 
merely representably fully faithful; and in that case it might be natural to say that 
T  is a “sub-KZ-doctrine” of V. But for our purposes later on, the interesting notion 
is that of full sub-KZ-doctrine, thus with the components of e\ T  = > 'P  being fully 
faithful.

A second remark: in the situation of Proposition 2.4, the components of the 
transformation e: T  are necessarily given by pointwise left Kan extensions. 
More precisely, (Ya ,Va)'-T(A)— >V(A) is the T(A)(7/a—, — )-weighted colimit 
of Ya (which exists because V(A) is cocomplete), and can thus be computed as

{Ya.,Va) ' T ( A ) — > V ( A T (A )(r? A - , i ) .

By fully faithfulness of £a 'T (A )  —>V(A) and the Yoneda Lemma, we can com­
pute that

T (A )( t7 a —, t )  =  V(Á)(eA o r?A—,£ a ( í ) )  =  V (Á ) (YA- , e A(t))  =  eA (¿)-

Hence the component of e: T  =^>V at A G Cat(Q) is necessarily the Kan extension 
(Ya, t/a)- We can push this argument a little further to obtain a characterisation of 
those KZ-doctrines which occur as full sub-KZ-doctrines of V:

Corollary 2.5 A KZ-doctrine (T, /¿, rj) on Cat (Q) is a full sub-KZ-doctrine ofV  if  
and only i f  all 7/a- A —> T  (A) and all left Kan extensions (Y&, t/a) • T  (A) —>V(A) 
are fully faithful.

Proof: If T  is a full sub-KZ-doctrine of V, then we have just remarked that €a =  
(1a, Va), and thus these Kan extensions are fully faithful. Moreover -  because 
£a ° Va =  with both £a and Ya fully faithful -  also tja must be fully faithful.

Conversely, if (T, //, rf) is a KZ-doctrine with each r¡^ A — >T(A) fully faith­
ful, then -  e.g. by [Stubbe, 2005, Proposition 6.7] -  the left Kan extensions (Ya, r)a) 
(exist and) satisfy (Ya, t/a) ° ̂ a — Ya- By assumption each of these Kan extensions 
is fully faithful, so we must now prove that they are the components of a natural 
transformation and that this natural transformation commutes with the multiplica­
tions of T  and V. We do this in four steps:

- 59-
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(i) For any A E Cat(Q), there is the free T-algebra /¿a‘ T ( T ( A ) ) — >T(A). 
But the free P-algebra M&\ V(V(A)) —>V(A) on V(A)  also induces a T-algebra
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on V(A): namely, M a o (Y p^, rfr^):  T (P (A ) — >V(A). To see this, it suffices 
to prove the adjunction M a o (Yp(A) > 1lv(A)) ^ rlv{A)- The counit is easily checked:

MA o (yp(A)i *?p(A)) ° Vv(&) = Ma o Yv{a) — l-p(A))

using first the factorisation property o f the Kan extension and then the split adjunc­
tion M a H Kp(A). As for the unit o f the adjunction, we compute that

V-p(A) 0 M a  o  (^ P (A ))  ^-P(A)) — T ( M a  o  (V p (A ), V-p(A))) 0 rlT {V (A))

>  T ( M a  o (Y^(a ) , i?p(A))) 0 7”( ^ ( A ) )

=  T ( M a  o  (y^p(A), ffr>(A)) °  V v ( A ) )

=  A))

=  ir^ iA ))»

using naturality of 7 7 and the KZ inequality for T , and recycling the computation we 
made for the counit.

(ii) Next we prove, for each Q-category A, that (Va,77a):T(A)—>V(A) is a 
T-algebra homomorphism, for the algebra structures explained in the previous step. 
This is the case if  and only if  (YA, r?A ) =  (MAo{Yp(A),r]V(A)})oT({YA, ??a})0 ?7t(A) 

(because the domain of (YA, Va) is a free T-algebra), and indeed:

Ma o  (Yp{a), *7p(a)> °T((YA,r]A))o t]T ( a )

=  Ma o (Yp{A),7]nA)) o rfp{a) o (r A, r?A)

=  m a o yP(A) o ( rA, t?a)

=  !p(A) °  (YA,T]A)
=  {YA,rfA).

(iii) To check that the left Kan extensions are the components of a natural trans­
formation we must verify, for any F: A — in Cat(Q), that V(F)  o (Y^, 7?a) =

° T(F).  Since this is an equation of T-algebra homomorphisms for the 
T-algebra structures discussed in step (i) -  concerning V(F),  it is easily seen to be 
a left adjoint and therefore also a T-algebra homomorphism [Kock, 1995, Proposi­
tion 2.5] -  it suffices to show that V(F)  o (YA, 7/a) ° Va =  O'®, Vb) ° T(F)  o tja. 
This is straightforward from the factorisation property of the Kan extension and the 
naturality of Ya and 7 7a-

- 60-
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(iv) Finally, the very fact that (Va>77a):T(A)—>V(A) is a T-algebra homo­
morphism as in step (ii), means that

'A MA

T (  A)
(>A,i?A>

->7>(A)

commutes: it expresses precisely the compatibility of the natural transformation 
whose components are the Kan extensions, with the multiplications of, respectively, 
T and V. □

3. Interlude: classifying cotabulations

In this section it is Proposition 3.3 which is of most interest: it explains in particular 
how the 2-functors on Cat(Q) of Proposition 2.4 can be extended to Dist(Q). It 
could easily be proved with a direct proof, but it seemed more appropriate to include 
first some material on classifying cotabulations, then use this to give a somewhat 
more conceptual proof of (the quantaloidal generalisation of) Akhvlediani et aV s 
‘Extension Theorem’ [2009, Theorem 1] in our Proposition 3.2, and finally derive 
Proposition 3.3 as a particular case.

A cotabulation of a distributor 3>: A-e-»B between Q-categories is a pair of 
functors, say S: A —>C and T: B — >C, such that =  C (T —, S - ) .  If F: C — >C7 
is a fully faithful functor then also F oS:A  — ► C' and F  o T: B —> C' cotabulate 3>; 
so a distributor admits many different cotabulations. But the classifying property of 
'P(B) suggests a particular one:

Proposition 3.1 Any distributor <I>: A-e-^B is cotabulated by Y$>: A — ► 'P(B) and 
Y^: B — We call this pair the classifying cotabulation of&: A -e*B .

Proof: We compute for a e A and b G B that V(B)(!©(&), Y$(a)) = Y$(a)(b) =  
$(£>, a) by using the Yoneda Lemma. □

For two distributors $ : A-e-»B and \£:B-e->>C it is easily seen that 1%®$ =  
Vo(^) o Y$, so the classifying cotabulation of the composite ^  ® $  relates to those 
of 3> and ^  as

*  ® $  =  V(C)(V0(V) o y * - ,  Yc - ) .  (4)
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For a functor F: A —>M it is straightforward that =  ° F, so

B (-  F - )  =  V(B)(Yb~, Yb o F - ) .  (5)

In particular, the identity distributor A: A A has the classifying cotabulation

A = V(A)(Ya - ,Y a~). (6)

Given that classifying cotabulations are thus perfectly capable of encoding compo­
sition and identities, it is natural to extend a given endo-functor on Cat(Q) to an 
endo-functor on Dist(Q) by applying it to classifying cotabulations. Now follows 
a statement of the ‘Extension Theorem’ of [Akhvlediani et al., 2009] in the gener­
ality of quantaloid-enriched category theory, and a proof based on the calculus of 
classifying cotabulations.

Proposition 3.2 (Akhvlediani et al., 2009) Any 2-functor T : Cat(Q) — >Cat(Q) 
extends to a lax 2-functor T ': Dist(Q) —> Dist(Q), which is defined to send a dis­
tributor $ : A ® to the distributor cotabulated by T(Y$): T(A) — ^ ( ^ ( B ) )  and 
T(l®): T(B) —>T(V(B)). This comes with a lax transformation

Dist(Q)

Cat(Q)

V Dist(Q)

\ (7)

r ->Cat(Q)

all of whose components are identities. This lax transformation is a (strict) 2- 
natural transformation (i.e. this diagram is commutative) i f  and only i fT 1 is normal, 
i f  and only i f  each T(Ya ):T (A) —>T(V( A)) is fully faithful.

Proof: If $  < ^  holds in Dist(Q)(A,B) then (and only then) Y$ < Yy holds 
in Cat(Q)(A,P(B)). By 2-functoriality of T :C at(Q )— >Cat(Q) we find that 
T (y*) < T(Y*), and thus T '($ )  < T(V) .

Now suppose that <1>: A -e-»B and B -©  ̂C are given. Applying T  to the com­
mutative diagram

A B C  
\  Y * / \y# Yc/

V(B)-------- >V(C)-pom
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gives a commutative diagram in Cat(Q), which embeds as a commutative diagram 
of left adjoints in the quantaloid Dist(Q) by application of i : Cat(Q) — ^Dist(Q). 
Lemma 2.2, the formula in (4) and the definition of T r allow us to conclude that 
T'OiO <g> T '($ )

Similarly, given F: A — in Cat(Q), applying T  to the commutative diagram

A B  B
1b . /  \  1b

/  N  A
B--- 77-- >• 'P(B)

gives a commutative diagram in Cat(Q). This again embeds as a diagram of left 
adjoints in Dist(Q) via i: Cat(Q) —> Dist(Q). Lemma 2.2, the formula in (5) and 
the definition of T ' then straightforwardly imply that

r ' ( B ( - F - ) )  =  r ( n ® ) ) ( r ( i ® ) - , r ( F B ) - ) ^ r ( B ) ( - , r ( F ) - )

> T ( B ) ( - ,T ( F ) - ) ,

accounting for the lax transformation in (7).
It further follows from this inequation, by applying it to identity functors, that 

T ' is in general lax on identity distributors. But Lemma 2.2 also says: (i) if each 
T(l®): T(B) — >T(V(B)) is fully faithful (equivalently, if T f is normal), then nec­
essarily (i o T )(F ) =  (T ; o i)(F )  for all F  : A —>B in Cat(Q), asserting that 
the diagram in (7) commutes; (ii) and conversely, if that diagram commutes, then 
chasing the identities in Cat(Q) shows that T r is normal. □

We shall be interested in extending full sub-KZ-doctrines of the free cocomple­
tion doctrine V: Cat(Q) —> Cat(Q) to Dist(Q); for this we make use of the functor 
V\ \ Dist(Q) — ► Dist(Q) defined in the diagram in (3).

Proposition 3.3 Let (T, e) be a fu ll sub-KZ-doctrine o fV : Cat(Q) —> Cat(Q). The 
lax extension T f: Dist(Q) — > Dist(Q) o fT : Cat(Q) —^Cat(Q) (as in Proposition 
3.2) can then be computed as follows: for <3>: A-e->B,

T[fb) =  P (B )(6b -,  - )  ® Vi(*) ® P ( A ) ( - ,  eA-).  (8)

Moreover, T ' is always a normal lax Sup -functor, thus the diagram in (7) commutes.

Proof: Let $:A-e->B be a distributor. Proposition 3.2 defines to be the
distributor cotabulated by T(Y$) and T(l®); but by fully faithfulness of the com­
ponents of e: T  =>V , and its naturality, we can compute that

r(P (B ))(T (y B) - ,  T ( r * ) - )

- 6 3 -
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=  V(V(M))((e-p(B) 0 T (Y b ))—, (e-p(B) °T(Ys,))—)
= P(P(B))((V(Yb) O eB) - ,  ( P ( Y * )  O £ a ) - )

= 7>(B)(£B-, - )  ® W ® ) ) ( W b) - ,  P (* * )-)  ® P (A )(- ,£a-)-

The middle term in this last expression can be reduced:

V

Thus we arrive at (8). Because V\ is a (strict) functor and because each £ a  is fully 
faithful, it follows from (8) that T '  is normal. Similarly, because V\ is a Sup-functor,

If we apply Proposition 3.2 to the 2-functor V: C at(Q )— > Cat(Q) itself, then we 
find that V' = V\ (and thus it is strictly functorial, not merely normal lax). In 
general however, T '  does not preserve composition.

4. Cocompletion: saturated classes of weights vs. KZ-doctrines

The ^-weighted colimit of a functor F  exists if and only if, for every a G Ao, 
colim(<£(—, a), F)  exists:

Indeed, colim(<3>, F)(a) =  colim ($(—, a), F)(*). But now $ ( - ,  a): *ta -©-»•B is a 
presheaf on B. As a consequence, a Q-category C is cocomplete if and only if it 
admits all colimits weighted by presheaves.

[-,P(B)(Yb- ,  - )  ® P (B )(-, Y*-) ® -]  
[-,P(B)(Yb- , Y * - ) ® - ]

[ -
v<

T 7 preserves local suprema too. □

B
F c

r/ <>$ colim(<I>,F)

H colim ($(—,a), F)

\r
*£a

à)
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It therefore makes perfect sense to fix a class C of presheaves and study those Q- 
categories that admit all colimits weighted by elements of C: by definition these are 
the C-cocomplete categories. Similarly, a functor G: C — >C' is C-cocontinuous if 
it preserves all colimits weighted by elements of C.

As [Albert and Kelly, 1988; Kelly and Schmitt, 2005] demonstrated in the case 
of V-categories (for V a symmetric monoidal closed category with locally small, 
complete and cocomplete underlying category Vo), and as we shall argue here for 
Q-categories too, it is convenient to work with classes of presheaves that “behave 
nicely”:

Definition 4.1 A class C of presheaves on Q-categories is saturated if:

i. C contains all representable presheaves,

ii. fo r each <j>: *x  -©-> A in C and each functor G: A —>V(B) for which each 
G(a) is in C, colim(</>, G) is in C too.

There is another way of putting this. Observe first that any class C of presheaves on 
Q-categories defines a sub-2-graph k : Distc(Q)c—> Dist(Q) by

A-e-^B is in Distc(Q) for all a G Ao: 3>(—, a) G C. (9)

Then in fact we have:

Proposition 4.2 A class C of presheaves on Q-categories is saturated i f  and only i f  
Distc(Q) is a sub-2-category o/Dist(Q) containing (all objects and) all identities. 
In this case there is an obvious factorisation

Cat(Q)--------------------------- > Dist(Q)

j
DistC(Q)

Proof: With (9) it is trivial that C contains all representable presheaves if and only 
if Distc(Q) contains all objects and all identities.

Next, assume that C is a saturated class of presheaves, and let 3>: A-e-^B and 
\£: B -e^C  be arrows in Distc(Q). Invoking the classifying property of V(C) and 
the computation of colimits in 'P(C), we find colim(<I>(—, a), Y^) =  & 0  <!>(—, a) 
for each a E Ao. But because 3>(—,a) e C and for each b G Bo also =
\£(—, 6) G C, this colimit, i.e. ^  <g> 3>(—, a), is an element of C. This holds for all 
a G Ao, thus the composition \I> <g) $>: A-e-»C is an arrow in Distc(Q).

- 6 5 -
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Conversely, assuming Distc(Q) is a sub-2-category of Dist(Q), let </>: *^-e+B 
be in C and let F : B — >V(C) be a functor such that, for each be  B, F(b) is in C. 
By the classifying property of V(C) we can equate the functor F: B —>V(C) with 
a distributor B -e* C and by the computation of colimits in V(C) we know that 
colim(0, F) =  ® </>• Now $ f ( —,&) =  F(b) by definition, so $p:B-e-»C is in 
Distc(Q); but also </> : * , 4  -e-»B is in Distc(Q), and therefore their composite is in 
Distc(Q), i.e. colim(^, F) is in C, as wanted.

Finally, if F: A —>M is any functor, then for each a E A the representable 
B(—, Fa): *ia -e-»B is in the saturated class C, and therefore B(—, F —): A -e^B 
is in Distc(Q). This accounts for the factorisation of C at(Q )— ^Dist(Q) over 
Distc(Q)c—>Dist(Q). n

We shall now characterise saturated classes of presheaves on Q-categories in 
terms of KZ-doctrines on Cat(Q). (We shall indeed always deal with a saturated 
class of presheaves, even though certain results hold under weaker hypotheses.) We 
begin by pointing out a classifying property:

Proposition 4.3 Let C be a saturated class of presheaves and, for a Q-category
A, write Ja 'C (A)— >V(A) for the fu ll subcategory ofV(A) determined by those 
presheaves on A which are elements of C. A distributor $:A-e-»B belongs to 
Distc(Q) i f  and only i f  there exists a (necessarily unique) factorisation

in which case $  is cotabulated by /$ : A — ^C(B) and I®: B — ^C(B) (the latter 
being the factorisation ofY& through J®).

Proof : The factorisation property in (10) literally says that, for any a G A, the 
presheaf Y$(a) on B must be an element of the class C. But Y$>(b) =  $ ( —, b) 
hence this is trivially equivalent to the statement in (9), defining those distributors 
that belong to Distc(Q). In particular, if C is saturated then Distc(Q) contains 
all identities, hence we have factorisations Y® =  J® ° i® of the Yoneda embed­
dings. Hence, whenever a factorisation as in (10) exists, we can use the fully faithful 
J®: C(B) — »'P(B) to compute, starting from the classifying cotabulation of 4>, that

$  =  p ( B ) ( y „ -  * * - )  =  P (B )(J b ( / b ( - ) ) , J b ( / * ( - ) ) )  =  C (B )(/b -  / * - ) ,

A ■> 'P(B)

(10)

C(B)

confirming the cotabulation of by and i®. □

- 6 6 -
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Any saturated class C thus automatically comes with the 2-functor

C0:Diste(Q)— ► Cat(Q): ^<&:A-e->B^ ( $  0  - :C (A )—+ C(B))

and the full embeddings Ja: C(A) — >V(A) are the components of a 2-natural trans­
formation

(slightly abusing notation). We apply previous results, particularly Proposition 2.4:

Proposition 4.4 I f  C is a saturated class of presheaves on Q-categories then the 
2-functor C: Cat(Q) — >Cat(Q) together with the transformation J :C = > V  forms 
a fu ll sub-KZ-doctrine of V. Moreover, the C-cocomplete Q-categories are pre­
cisely the C-algebraSy and the C-cocontinuous functors between C-cocomplete Q- 
categories are precisely the C-algebra homomorphisms.

Proof : To fulfill the hypotheses in Proposition 2.4, we only need to check the 
factorisation of the multiplication: if we prove, for any Q-category A and each 
<fi E C(C(A)), that the (J  * J)a (<j>)-weighted colimit of l p ( A )  *s in C(A), then we 
obtain the required commutative diagram

But because (J  * J)a =  V(Ja ) ° Jc(A) we can compute that 

colim(( J  * J )a (^ ), lp(A)) =  colim(P(A)(—, JA~) 0  <j>, 1P(A)) =  colim(0, JA)

Dist(Q)

Distc(Q)----------- -;------------- ► Cat(Q)
Co

Composing Co with j :  Cat(Q) —> Distc(Q) it is natural to define

C:Cat(Q)— >Cat(Q): ( f : A — >b )  h*  (b ( - . F - )  0  - :C (A )— >C(B))

together with 
V

Cat(C) p  Cat(Q)

V(V(A))
colim(—, l-p(A))

>P(A)

Ja( J *  J ) a

C(C(A)) >C( A)

- 6 7 -
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and this colimit indeed belongs to the saturated class C, because both <f> and (the 
objects in) the image of Ja  are in C.

A Q-category B is a C-algebra if and only if J®: B —^C(B) admits a left adjoint 
in Cat(Q) (because C is a KZ-doctrine). Suppose that B is indeed a C-algebra, 
and write the left adjoint as L®: C(B) —►B. If <t>: *x  A is a presheaf in C and 
F: A —>3 is any functor, then C(F)(0) is an object of C(B), thus we can consider 
the object L®(C(F)(0)) of B. This is precisely the 0-weighted colimit of F , for 
indeed its universal property holds: for any b G B,

M(LB(C(F)(<t>)),b) =  C (B )(C (F )(0 ),/b (6))

=  V(M)(MC(F)(<f>)),Mh(b)))

=  [V(F)(JB(<t>)),YB(b)]

=  [ ® ( - , F - ) 0  J b W ,B ( - ,6 ) ]

=  [JB(4 > ) ,® ( F - - ) ®  !(-,& )] 

-  [0 ,B ( F -  &)].

(Apart from the adjunction L® H J® we used the fully faithfulness of J® and its 
naturality, and then made some computations with liftings and adjoints in Dist(Q).)

Conversely, suppose that B admits all C-weighted colimits. In particular can we 
then compute, for any 0 G C(B), the 0-weighted colimit of 1®, and doing so gives 
a function / :  C(B) — 0 i-> colim(</>,1®). But for any 0 G C(B) and any be  B 
it is easy to compute, from the universal property of colimits and using the fully 
faithfulness of J®, that

®(.m,h) =  &  B (1b-,6)] =  P(B  ) (0 ,r B(fc))

=  P (B )(JB(0 ) ,J B(/B(fe))) =  C(B)(0,/„(&)).

This straightforwardly implies that 0 /(<£) is in fact a functor (and not merely a 
function), and that it is left adjoint to J®; thus B is a C-algebra.

Finally, let G: B — >C be a functor between C-cocomplete Q-categories. Sup­
posing that G is C-cocontinuous, we can compute any ^  G C(B) that

G(L®(^)) =  (^(colim ^), 1 ®) =  colim(^), G) =  L<c{C{G){$)),

proving that G is a homomorphism between the C-algebras (B, L®) and (C, Lq). 
Conversely, supposing now that G is a homomorphism, we can compute for any 
presheaf (f>: *x -©->* A in C and any functor F : A —>M that

G(colim (0,F)) =  G(Lm(C(F)(<f>))) =  Lc (C(G)(C(F)(0))) =  colim(0, G o F ) , 

proving that G is C-cocontinuous. □

Also the converse of the previous Proposition is true:

- 6 8 -
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Proposition 4.5 I f  (T, e) is a fu ll sub-KZ-doctrine ofV: Cat(Q) —> Cat (Q) then

is a saturated class of presheaves on Q-categories. Moreover, the T-algebras are

precisely the CT-cocontinuous functors between the Cj--cocomplete categories.

Proof : We shall write Distr(Q) for the sub-2 -graph of Dist(Q) determined -  as 
prescribed in (9) -  by the class C7 -, and we shall show that it is a sub-2-category con­
taining all (objects and) identities of Dist(Q). But a distributor A-e-»® belongs 
to Dist t (Q) if an^ only if the classifying functor Y$: A —>V(B) factors (necessar­
ily essentially uniquely) through the fully faithful e®: T(B) — >V(M).

By hypothesis there is a factorisation Ya = £a 0 Va f°r A. G Cat(Q), so 
Dist7 -(Q) contains all identities. Secondly, suppose that <£: A-e-»B and \&: B-e->C 
are in D ist^Q ), meaning that there exist factorisations

Cr := {£A(t) I A G Cat(Q), t G T(A)} (11)

precisely the Cq--cocomplete categories, and the T-algebra homomorphisms are

A *P(B) B C)

/(J> ¿
r m

I\¡? Jno
The following diagram is then easily seen to commute:

T (B )-------- - ------ > p(B)

T ( C )  T ( P ( C ) )  ■ > V{V{C))

n i*) n h ) \
T ( T ( C ) )  ■ -> T(T{C)) J V{Y*)

^ c) (e*e)€ V{ec)^J

X

e-p(C)

P(C)

But we can compute, for any 0 G P(B), that

(Mc oV(Y*))(<l>) =  colim (P(A )(- y*-)® < M p(A ))

Y*Y,p

- 6 9 -
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=  colim(0 ,

=  #  (8) (¡)

=  W )(0)

and therefore = Vo('&)°Y$ =  M coV(Y$)o£BoI ç> =  £ c°M c°T (/^ )o /$ ,
giving a factorisation of Y&®$ through €c, as wanted.

The arguments to prove that a Q-category B is a T-algebra if and only if it is C7 -- 
cocomplete, and that a T-algebra homomorphism is precisely a Cq--cocontinuous 
functor between C^-cocomplete Q-categories, are much like those in the proof of 
Proposition 4.4. Omitting the calculations, let us just indicate that for a T-algebra
B, thus with a left adjoint Lb*T(B)—>M to 7 7®, for any weight in
Cj' -  i.e. <j> =  £a(î) for some t E T(A) -  and any functor F: A — the ob­
ject LB(T(F))(t) is the 0-weighted colimit of F. And conversely, if B is a Cqr- 
cocomplete Q-category, then T (B )—>M:t »->► colim(£B(£)> 1®) is the left adjoint 
to t/b, making B a T-algebra. □

If C is a saturated class of presheaves and we apply Proposition 4.4 to ob­
tain a full sub-KZ-doctrine (C, J) of P :C a t(Q )— >Cat(Q), then the application 
of Proposition 4.5 gives us back precisely that same class C that we started from. 
The other way round is slightly more subtle: if (T, e) is a full sub-KZ-doctrine of
V then Proposition 4.5 gives us a saturated class C7 - of presheaves, and this class in 
turn determines by Proposition 4.4 a full KZ-doctrine of P , let us write it as (T ', e'), 
which is equivalent to T. More exactly, each (fully faithful) sa- T (A) —>V(A) fac­
tors over the fully faithful and injective e'A: T ' (A) — >V{A), and this factorisation is 
fully faithful and surjective, thus an equivalence. These equivalences are the com­
ponents of a 2 -natural transformation ô: T  = > T ' which commutes with e and ef.

We summarise all the above in the following:

Theorem 4.6 Propositions 4.4 and 4.5 determine an essentially bijective corre­
spondence between, on the one hand, saturated classes C of presheaves on Q- 
categorieSy and on the other handy fu ll sub-KZ-doctrines (T, e) of the free co­
completion KZ-doctrine P : Cat(Q )—►Cat(Q ); a class C and a doctrine T  cor­
respond with each other i f  and only i f  the T -algebras and their homomorphisms 
are precisely the C-cocomplete Q-categories and the C-cocontinuous functors be­
tween them. Proposition 3.3 implies that, in this case, there is a normal lax Sup- 
functor T ': Dist(Q) —> Dist(Q), sending a distributor <&: A-e+B to the distributor 
T 7($) : T(A) -©->• T (B) with elements

T'(3>)(t, s) =  V(B)(6b(*), $  ® eA(s))9 for s E T(A), t E T(B),
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which makes the following diagram commute:

Dist(Q) -21*. Dist(Q) 

i i 

Cat(Q) — Cat(Q)

5. Conical cocompletion and the Hausdorff doctrine

5.1 Conical colimits

Let A be a Q-category. Putting, for any a, a ' G A,

a < a! ta =  to! and 1  ta < A (a , a')

defines an order relation on the objects of A. (There are equivalent conditions in 
terms of representable presheaves.) For a given Q-category A and a given object 
X  G Qo, we shall write (Ax, < x )  for the ordered set of objects of A of type X. 
Because elements of different type in A can never have a supremum in (Ao, <), it 
would be very restrictive to require this order to admit arbitrary suprema; instead, 
experience shows that it makes good sense to require each (Ax, < x ) to be a sup- 
lattice: we then say that A is order-cocomplete [Stubbe, 2006]. As spelled out in 
that reference, we have:

Proposition 5.1 For a family (a*)i€/ in Ax, the following are equivalent:

L Vz ai exists in Ax and A(V* az, —) =  Ai ~ ) holds in Dist(Q)(A, *x)>

ii. \/z ai exists in Ax and A(—, V* a%) =  Vi ? ai) holds in Dist(Q)(*x, A),

Hi. i f  we write (/, <) for the ordered set in which i < j  precisely when at < x  &j 
and Ifo r  the free Q(X , X)-category on the poset (/, <), F: I —> A for the 
functor i i—y ai and 7 : *x -& *Ifor the presheaf with values 7  (z) =  1  x  for all 
i G I, then the 7 -weighted colimit of F  exists.

In this case, colim(7 , F) =  Vi ai and it is the conical colimit of(a,i)iei  in A.

It is important to realise that such conical colimits -  which are enriched colimits! -  
can be characterised by a property of weights:

Proposition 5.2 For a presheaf (f): *x  -©-> A, the following conditions are equiva­
lent:
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i. there exists a family (a*)^/ in Ax such that for any functor G: A — >M, i f  
the 4>-weighted colimit of G exists, then it is the conical colimit of the family 
(G(ai))i,

ii. there exists a family (a^)^/ in Ax for which (j) =  \ / i A(—, a^) holds in 
Dist(Q)(*x, A),

iii. there exist an ordered set ( /, <) and a functor F: I —> A with domain the free 
Q (X , X)-category on ( / ,  < )  such that, i f  we write 7 : *x  I for the presheaf 
with values 7  (z) =  1 x fa r  all ¿ E l ,  then (j) =  A ( —, F - )  ® 7 .

In this case, we call (j) a conical presheaf.

Proof : (i=Mi) Applying the hypothesis to the functor Y&: A —>V(A) -  indeed 
colim(0, 1a) exists, and is equal to 0 by the Yoneda Lemma -  we find a family 
(ai)iei  such that </> is the conical colimit in P(A) of the family (Ya^))«- This 
implies in particular that 4> =  \ / i A(—, a*).

(ii=Mii) For (j) =  V*A(—,di) it is always the case that [V* A(—,o*), —] =  
Ai[A(—,O i),-], i.e. 'P(A)(yi A(—, ai), —) =  Aj P (A )(A (-, a*), - ) .  Thus <f> is 
the conical colimit in V(A) of the family (A(—, a*))*, and Proposition 5.1 allows 
for the conclusion.

(iii=M) If, for some functor G: A — >B, colim(0, G) exists, then, by the hy­
pothesis that (j) =  A (—,jF—) ® 7 , it is equal to colim(A(—, F —) ® 7 , G) =  
colim(7 , G o F). The latter is the conical colimit of the family (G (F(i)))i£i ; thus 
the family (F(z))i fulfills the requirement. □

A warning is in order. Proposition 5.2 attests that the conical presheaves on a 
Q-category A are those which are a supremum of some family of representable 
presheaves on A. Of course, neither that family of representables, nor the family of 
representing objects in A, need to be unique.

Now comes the most important observation concerning conical presheaves.

Proposition 5.3 The class of conical presheaves is saturated.

Proof : We shall check both conditions in Proposition 4.1. All representable pre­
sheaves are clearly conical, so the first condition is fulfilled. As for the second 
condition, consider a conical presheaf </>:*x-©->A and a functor G: A — >*P(B) 
such that each G (a): *ia -e->B is a conical presheaf too. The 0-weighted colimit 
of G certainly exists, hence the first statement in Proposition 5.2 applies: it says 
that colim(0, G) is the conical colimit of a family of conical presheaves. In other 
words, colim(</>, G) is a supremum of a family of suprema of representables, and is 
therefore a supremum of representables too, hence a conical presheaf. □
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5.2 The H ausdorff doctrine

Applying Theorem 4.6 to the class of conical presheaves we get:

Definition 5.4 We write H: Cat(Q) — v Cat(Q)for the KZ-doctrine associated with 
the class of conical presheaves. We call it the H ausdorff docrine on Cat(Q), and 
we say that T-L{A) is the H ausdorff Q-category associated to a Q-category A. We 
write T-Lf: Dist(Q) —> Dist(Q)for the normal lax Sup-junctor which extends T-Lfrom 
Cat(Q) to Dist(Q).

To justify this terminology, and underline the concordance with [Akhvlediani et 
al., 2009], we shall make this more explicit. According to Proposition 4.4, 'H(A) 
is the full subcategory of V(A) determined by the conical presheaves on A. By 
Proposition 5.2 however, the objects of H(A) can be equated with suprema of rep- 
resentables; so suppose that

(The penultimate equality is due to the fact that each A (—, a'): *y -©->> A is a left 
adjoint in the quantaloid Dist(Q), and the last equality is due to the Yoneda lemma.) 
This is precisely the expected formula for the “Hausdorff distance between (the 
conical presheaves determined by) the subsets A and Af of A”. It must be noted that 
[Schmitt, 2006, Proposition 3.42] describes a very similar situation particularly for 
symmetric categories enriched in the commutative quantale of postive real numbers.

Similarly for functors: given a functor F: A — between Q-categories, the 
functor T-L{F): 'H(A) — »%(®) sends a conical presheaf 0 on A to the conical pre­
sheaf ®(—, F - )  <g) <f> on ®. Supposing that 4> =  \ZaeA ^ ( —>a) ôr some A C Ax,

(f) =  \J  A (—,a) and <t> = \ j  A(—,a7)
a 'e A '

for subsets A C Ax and A! C Ay. Then we can compute that

= P(A)(4>',4>)
=  [ < P \  4 > ]

= tv  A(- ’ a/)> V  A(- ’
a‘ a

/ \ [A (—, a ') ,\J  A(—, a)]
a

A '
a '  a

=  A V A(a,’a)-
a' a
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it is straightforward to check that

B(—, F - )  <g> <fi = \ J  | b ( —,Fa ; )o  \ J  A (x,a)
\ aeA /

V  ( V  B ( - , F * ) o A ( * , o )
a e A  \x e A .

=  \ / B ( - , F a ) .
a e A

That is to say, “H(F)  sends (the conical presheaf determined by) A  C A to (the 
conical presheaf determined by) F  (A) Ç ®”.

Finally, by Proposition 3.3, the action of H! on a distributor 3>: gives
a distributor %'($): T-L(A) -e^'H'(B) whose value in 0 G T-L(A) and € W(B) is 
P (B )(^ , $  ® </>). Assuming that

4> =  \J  A(—, a) and ^  =  \J  B (—, b)
a e A  beB

for some A C Ax  and £? Ç By, a similar computation as above shows that

W'(*)(V>,0) = / \  V  $(6, a).

This is the expected generalisation of the previous formula, to measure the “Haus- 
dorff distance between (the conical presheaves determined by) A Ç A and B  Ç B 
through A-e-»B”.

5.3 Other examples

The following examples of saturated classes of presheaves have been considered by 
[Kelly and Schmitt, 2005] in the case of categories enriched in symmetric monoidal 
categories.

Example 5.5 (M inimal and maximal class) The smallest saturated class of pre­
sheaves on Q-categories is, of course, that containing only representable presheaves. 
It is straightforward that the KZ-doctrine on Cat(Q) corresponding with this class is 
the identity functor. On the other hand, the class of all presheaves on Q-categories 
corresponds with the free cocompletion KZ-doctrine on Cat(Q).
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Example 5.6 (Cauchy com pletion) The class of all left adjoint presheaves, also 
known as Cauchy presheaves, on Q-categories is saturated. Indeed, all repre­
sentable presheaves are left adjoints. And suppose that <J>: A-e->B and \I>:B-e-»C 
are distributors such that, for all a G A and all b G B, $ ( —, a): *ta -©^B and 
\I>(—, b): *tb~&>C are left adjoints. Writing Pb’-C s » * tb for the right adjoint to 
\I>(—, 6), it is easily verified that \I> is left adjoint to Vbe® &) ® Pb• This makes 
sure that (\£ ® $ ) (—, a) =  ® <£(—, a) is a left adjoint too, and by Proposition
4.2 we can conclude that the class of Cauchy presheaves is saturated. The KZ- 
doctrine on Cat(Q) which corresponds to this saturated class of presheaves, sends 
a Q-category A to its Cauchy com pletion [Lawvere, 1973; Walters, 1981; Street, 
1983].

Inspired by the examples in [Lawvere, 1973] and the general theory in [Kelly 
and Schmitt, 2005], Vincent Schmitt [2006] has studied several other classes of 
presheaves for ordered sets (viewed as categories enriched in the 2-element Boolean 
algebra) and for generalised metric spaces (viewed as categories enriched in the 
quantale of positive real numbers). He constructs saturated classes of presheaves 
by requiring that each element of the class “commutes” (in a suitable way) with all 
elements of a given (not-necessarily saturated) class of presheaves. These inter­
esting examples do not seem to generalise straightforwardly to general quantaloid- 
enriched categories, so we shall not survey them here, but refer instead to [Schmitt, 
2006] for more details.
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