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CATEGORIES OF TOPOLOGICAL SPACES
WITH SUFFICIENTLY MANY

SEQUENTIALLY CLOSED SPACES
by Dikran DIKRANJAN &#x26; Jan PELANT

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
VolumeXXXVIII-4 (1997)

RESUME. Pour une classe P d’espaces topologiques, un espace X
de ? est dit s6quentiellement P-fermé si, pour tout ?-space Y
contenant X comme sous-espace, X est s6quentiellement ferme dans
Y. On dit que P a assez d’espaces s6quentiellement fermes si pour
tout X due ? il existe un espace Y ’P-séquentiellement ferme

contenant X comme sous-espace relativement a toutes les it6rations
de fermeture sequentielle.
Dans cet article, les auteurs prouvent: a) La cat6gorie Tych des
espaces de Tychonoff n’a pas assez d’espaces s6quentiellement
ferm6s- b) les categories US, resp. SUS, d’espaces topologiques dans
lesquels toute suite convergente a un unique point limite (resp. un
unique point d’accumulation) ont assez d’espaces s6quentiellement
fermés.
On sait que les espaces s6quentiellement Tych-ferm6s et les espaces
s6quentiellement SUS-ferm6s sont exactement les espaces denom-
brablement compacts, et que les espaces s6quentiellement US-ferm6s
coincident avec les espaces s6quentiellement compacts. On en deduit
1’existence de certaines extensions d6nombrablement compactes ou

pseudocompactes.

* This work has been supported by the research projects 60% and 40% of
the Italiano Ministero dell’ Universita e della Ricerca Scientifica e Tecno-

logica- the second author was partially supported by the grant GA CR
201/97/0216
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Introduction.

The study of the extensions of topological spaces has always been
one of the main points of interest in point-set topology (the pioneer
work was done by Alexandroff, Fomin and Katetov). In particular,
spaces which have no proper extension within a class P of spaces

(the so called P-closed spaces) have been extensively studied (see for
example the survey [BPS]).

When P is a class determined by a low separation axiom P, P-
closed spaces are quite rare. In fact, no To-closed spaces exist and
every Tl-closed space is finite (for more examples see [DGo]). This

phenomenon suggests a substitution of the usual notion of density
and closedness by density and closedness with respect to the sequential
closure Q and its idempotent hull o-oo Such an approach was adopted
in [DGo] and [Gol], where the notion of a sequentially P-closed space
was introduced (X E P is sequentially P-closed if for each embedding
X - Y with Y E P, X is sequentially closed in Y). In case P

is closed with respect to taking (sequentially closed) subspaces, X
is sequentially P-closed iff X has no proper extension Y E P such
that X is a-dense (resp. a°°-dense) in Y. Obviously every P-closed
space is sequentially P-closed. To give further examples we need the
following notation: Top will denote the category of topological spaces
and continuous maps, all subcategories of Top considered below are
full, so that they are described by their objects.

Topo - To-spaces

Top, - Tl-spaces

US - topological spaces in which every convergent sequence has
a unique limit point

SUS - topological spaces in which every convergent sequence has
a unique accumulation point

Haus(Comp) - topological spaces in which every compact sub-
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space is Hausdorff

Haus - Hausdorff topological spaces

Ury - Urysohn spaces (distinct points have disjoint closed neigh-
bourhoods)

Reg - regular Ti-spaces

S(n) - S(n)-spaces in the sense of Viglino [V2] (see the definition
below)

S(a) - S(a)-spaces in the sense of Porter and Votaw [PV] (see the
definition below)

FHaus - functionally Hausdorff topological spaces (continuous
real valued functions separate points)

Tych - Tychonov spaces (=completely regular Ti-spaces)

Tqc - spaces with trivial quasi-components (every point is inter-
section of clopen sets)

0-dim - zero-dimensional Tl-spaces (with respect to ind).

A (strongly) epireflective subcategory of Top is a subcategory
closed under taking subspaces (equipped with finer topologies) and
products. It is easy to see that every epireflective subcategory of Top
containing at least one non-indiscrete space contains 0-dim. Thus

every strongly epireflective subcategory of Top containing at least
one non-singleton space contains Tqc. Moreover, every epireflective
subcategory of Top contained in Topo and containing at least one
non-singleton space contains 0-dim.

Let a be an infinite ordinal, a topological space X is said to

satisfy the axiom S(a) (Porter and Votaw [PV]) if for each pair of
distinct points xo, Xl in X there are transfinite sequences of open sets

{Uy : y E a} and {Vy:y E a} such that:
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Let a = n be a finite ordinal, a topological space X is said to
satisfy the axiom S(n) (Viglino [V2]) if for each pair of distinct points
x0, x1, in X there is a finite sequence of open sets {Uk : 1  k  n}
such that

A space X is said to be countably compact if X does not contain
any countable infinite closed discrete set. Let us note this notion will

be applied only to Tl-spaces in this paper.

For P C SUS every countably compact P-space is sequentially
P-closed and for P = SUS the converse is also true (see Proposition
1.1 or [DGo, Theorem 1.3]). Analogously, every sequentially com-
pact P-space is sequentially P-closed for P C US. For P = US,
the converse is also true (see Proposition 1.1 or [DGo, Theorem 1.3]).
The sequentially P-closed spaces are characterized in [Go] in many
cases (P = Haus,S(n),Reg etc.). They coincide with the count-
ably compact spaces for P = Tych, metrizable spaces, normal spaces,

. paracompact spaces etc. [Gol].
In view of the above described phenomenon it is natural to ask

whether there are enough sequentially closed spaces. First of all, we
need to give a precise form of this question. Take P = Tych, now
sequentially closed means countably compact, so that every X E P
admits an extension Y which is even compact. However, this cannot
be considered as a satisfactory answer since different notions of density
and closedness appear. This is why we give the following

DEFINITION. The class P has sufficiently many 3sequentially closed
spaces if for each X E P there exists an embedding X --+ Y such that
Y is sequentially P-closed and X is o,’-dense in Y.

Note that P = Top, has not sufficiently many sequentially closed
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spaces, since each sequentially closed space in Top, is finite. Really,
every infinite Tl-space X admits a proper one-point Tl extension X f
(corresponding to the Frechet filter in X, X f is both compact and

sequentially compact) and X is moreover a-dense in X f. This can

be extended to other categories of weak Hausdorff spaces (as the cate-
gories Ca, defined by Hoffmann [Hof] for any infinite cardinal a, having
as objects the Tl-spaces which do not contain copies of the space of a
points provided with the cofinite topology). It was mentioned in [Gol]
that a counterexample of Herrlich can easily witness that Reg has not
sufficiently many sequentially closed spaces. We give here appropriate
constructions which yield that neither Reg nor Tych have sufficiently
many sequentially closed spaces, while US and SUS have sufficiently
many sequentially closed spaces. For Tych and SUS the sequentially
closed spaces are precisely the countably compact ones so that we dis-
cuss also the existence of certain countably compact or pseudocompact
extensions. The principal results are announced in Section 1 and the
proofs are given in Section 3. In Section 2 we offer a more general
categorical setting based on closure operators.

Acknowledgments. Some aspects of the general problem consid-
ered here were discussed by the first named author and Iv. Gotchev.
In particular, he obtained independently a proof of a part of Theorem
1.2. Thanks are due also to the referee for his helpful suggestions.

I. Main results.

If one takes as starting point the condition that a certain class
of compact-like spaces in P should be sequentially P-closed, then one
gets the following separation axioms for P, where N00 denotes the
one-point Alexandroff compactification of the discrete space N.

1.1 PROPOSITION.

A) For a strongly epireflective subcategory P of Top the following
conditions are equivalent:
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a) every sequ’entially compact (resp. countably compact) P-
space is sequentially P-closed;
b) Noo is sequentially P-closed (resp. P-closed);
c) P C US (resp. P C SUS).

B) If P = US (resp. P = SUS then sequential P-closedness
coincides with sequential (resp. countable) compactness for P-spaces.

Proof. A) c) =&#x3E; a) =&#x3E; b) is obvious. Let b) hold: We show first
that P C Topi. Assume not, then either P = Top or P = Topo. It is
easy to see that neither sequentially P-closed nor P-closed spaces exist.
This contradicts b) and proves P C Top,. To prove the sequentially
compact version of the implication b) =&#x3E; c) we assume that P g US.
Then there exists a space X E P and a converging sequence {xn} with
two distinct limit points x 54 y. Note that the set S = {xn : n E N}
is infinite since X E TOP1. Consequently x, y E S can be assumed
without loss of generality. Now the subspace Y of X with underlying
set {x, y} U S is in P. Denote by Y’ the space obtained from Y by
declaring all points of S isolated. Then Y’ E P , Y’)(y) = N00 and
Y’B{y} is o-dense in Y’. This contradicts b).

To prove the version in brackets of the implication b) =&#x3E; c) assume
that P g SUS. Then there exists a space X E P and a converging
sequence xn - x with accumulation points y # x. With S as above
the case of finite S is resolved as before. Otherwise define Y and Y’

as before to obtain a similar contradiction with b).

B) This is Theorem 1.3 (resp. Theorem 1.4) in [DGo]. 0
Let us note that a similar relation holds between the class of

compact spaces and the category Haus(Comp): this is the largest
epireflective subcategory P of Top containing all compact spaces and
such that they are P-closed [Hof, Corollary 1.3 b)].

Proposition 1.1 explains our choice of US and SUS in the follow-

ing

1.2 THEOREM.. SUS and US have sufficiently many sequentially
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closed spaces.

The proofs of this and the next two theorems are given in §3.

1.3 THEOREM. Tych has not sufficiently many sequentially closed
spaces.

We note that for SUS and Tych the problem of embeddings
into sequentially closed spaces becomes a problem of embeddings into
countably compact spaces. Let us note that this cannot be resolved

for categories Tqc C P C Haus (in particular, for all S(a)) because
of the following

1.4 EXAMPLE. There exists a space X E Tqc which does not admit
an embedding X - Y E Haus, such that Y is countably compact.
Take as X the Cantor set and fix a converging sequence xn --&#x3E; x

in X such that z g F = {xn : n E N}. Now equip X with the
coarsest topology Q containing the usual topology T of X and having
the set F as a closed set. Now X is H-closed (=Haus-closed) since
the semiregularization of Q is T, so compact. On the other hand, F
is a closed discrete set in (X, a), so (X, a) is not countably compact,
thus there exists no countably compact Hausdorff space Y containing
X as a subspace, since X would be a closed subspace of Y.

The above example gives no answer for the category Tych, in fact,
even compact extensions are available here, in which the starting space
is obviously K-dense, with K the compact closure [AF] (compare with
1.3). Let us emphasize, that in all these cases countable compactness
yields sequential P-closedness.

Arhangel’skij [A] showed that each Tychonov space X can be em-
bedded in a Hausdorff countably compact space X such that t(X) =
t(X ) and asked if every Tychonov space with countable tightness ad-
mits a countably compact Tychonov extension with countable tight-
ness. Nogura showed [N] that there is a Tychonov first countable space
which cannot be embedded in a Hausdorff countably compact Frechet
space. In particular, under the assumption b = wl, he gave an exam-
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ple of a Tychonov first countable space which cannot be embedded in
a regular countably compact T1-space with countable tightness. The
notion of countably-compact-ification was introduced by Morita [Mo]
(a space Z is a countably-compact-ification of a space X if Z is count-
ably compact, X is dense in X and every closed countably compact
subset of X is closed also in Z). He also characterized the M-spaces
admitting countably-compact-ifications; an example of a normal lo-
cally compact M-space without any countably-compact-ification was
provided by D. Burke and van Douwen [BD].

Recall that a space X is said to be pseudocompact if every locally
finite family of open sets is finite. It was shown by Gotchev [Go1]
that sequentially P-closed spaces are often pseudocompact. We have
the following counterpart of Theorem 1.3 and Example 1.4 concerning
pseudocompact extensions. As a by-product we obtain a new exam-
ple witnessing that Reg has not sufficiently many sequentially closed
spaces (see [Go1]).
1.5 THEOREM. Every Hausdorff space X admits a pseudocompact.
Hausdorff extension Y such that X is a-dense in Y. There exists a

zero -dimensional space X having no pseudocompact regular extension
Y such that X is 0’00 -dense in Y. In particular, Reg has not suffi-
ciently many sequentially closed spaces.

Note that even a closed subspace of a sequentially closed space
need not be sequentially closed, therefore the existence of embeddings
into sequentially closed spaces does not guarantee the existence of
sufficiently many sequentially closed spaces in the sense of 1.1 as the
case P = Tych shows.

2. A categorical look - absolutely closed spaces.

The notions of closedness and density with respect to an appro-
priate general notion of a closure operator give a possibility of a more
general approach to absolute closedness. A closure operator C in Top
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assigns to every topological space X and each subset M of X a subset
c(M) of X according to the following
2.1 DEFINITION. A collection of functions

is a closure operator of Top if:

iii) for each continuous map f : X -&#x3E; Y and A C X f (cx(A)) C
cx(f(A)).

We write simply c(A) instead of cx (A) when no confusion is pos-
sible. In the terminology of [DG1] (see also [DT]) these are grounded
closure operators of Top with respect to the class of embeddings.
Note that a closure operator need not be idempotent nor additive (i.e.
c(c(A)) = c(A) or cx (A U B) = cx(A) U cx (B), for A, B C X, need
not always be true).

We say that a map f : X - Y in Top is C-dense (resp. C-closed)
if cY(f(X)) =Y (resp. cY(f(X)) = f(X)).

The ordinary closure K in Top, defined by K(M) = M is a
closure operator in the above sense, it is idempotent and has many
other pleasant properties. Other examples are o- and K mentioned in
Section 1 and Velichko’s 0-closure operator defined for any topological
space X and M C X as clgm = {x E X: each closed neighbourhood
of x meets M} ([V1]).

A partial order between closure operators is defined by setting
C  D whenever c(M) C d(M) always holds. Composition CD be-
tween closure operators C and D is defined by cd(M) = c(d(M)).
For every ordinal a we define the a-th iteration of C as the clo-

sure operator Ca given recursively by C1 = C, Ca+1 - CC« and
c°’(M) = Ufc,6(M) : ,0  a} for limit a. The idempotent hull C°° of
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a closure operator C is the finest idempotent closure operator coarser
than C, it is defined by c°°(M) = Ufco’(M) : a E Ordl.

In analogy with sequentially P-closed spaces, one can consider
absolutely (C, P)-closed spaces X E P such that for every Y E P
containing X as a subspace, X is C-closed in Y (so that absolutely
(o-, P)-closed is the same as sequentially P)-closed). This notion be-
comes especially significant when the closure operator C and the cat-
egory P are related. In case P = A(C) - the category of spaces with
C-closed diagonal, the term absolutely C-closed space will be used
([DG3]). Now the absolutely a-closed spaces are precisely the sequen-
tially US)-closed spaces since US = A(o-).

The most significant class of examples was introduced by Salbany
[S] who attached to any subcategory A of Top a regular closure oper-
ator CA in the following way. For X E Top and M E 2x set

where Eq(f , g) = {x E X: f (x) = g(x)}.
In case C = cp is the regular closure operator associated to a

. strongly epireflective subcategory P one can show that P = 0(P)
([GH]). Here we adopt the term absolutely P-closed space instead of
absolutely c1’;closed ([DG2]). If K denotes the usual Kuratowski clo-

sure, then 0(K) = Haus and Cgaus = K on Haus, so all three no-
tions - absolutely (K, Haus)-closed space, absolutely K-closed space
and absolutely Haus-closed space coincide here with the notion of
H-closed space ([AU]).

In case P = To the regular closure F = cp is the well known front
closure ([B]) and absolutely To-closed spaces coincide with absolutely
F-closed spaces, and coincide with the sober spaces ([DG3]).

The absolutely Haus(Comp)-closed spaces were characterized
by Gotchev [Go2]. In particular, he showed, that every Haus(Comp)-
closed space is compact, while there exists non-compact absolutely
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Haus(Comp)-closed space. Let us mention, that the regular closure
of Haus(Comp) coincides with K/X) in Haus(Comp), where x is (as
before) the compact-closure [AS]. Moreover, due to a recent result in
[D2], Haus(Comp) = A(k), thus absolutely x-closed spaces coincide
with absolutely Haus(Comp)-closed spaces.

The above observation can be generalized by means of the no-
tion of a semiregular closure operator C (see Definition 2.2 below).
Semiregularity is a good substitute of regularity - the natural closure
operators available in Top are usually semiregular and rarely hap-
pen to be regular. For a space X and subspace M of X e denote by
X TTM X the adjunction space with respect to M and by

the canonical embeddings of X in X TTM X.

2.2 DEFINITION. (a) ([D2], Definition 4.2) A closure operator f! is
semiregulax, if for every X E A(C) and C-closed subspace M of X
the morphisms k1 and k2 in (2) are C-closed.

(b) ([D2], Definition 4.3) For X E Top and M E 2x set in the
notation of (2) c(M) = k-’(c(k2(X))-

If the closure operator C is additive, then 6 is a semiregular
closure operator; moreover, C is semiregular iff C°° = C°° ([D2],
Corollary 4.11 and Lemma 4.4). Every regular closure operator is
semiregular ([D2], Lemma 4.1). Most of the known closure operators
are semiregular (for a general approach to semiregularity and further
examples and non-examples see Section 6 in [D2]).
2.3 THEOREM. Let C be a closure operator of Top. Then every

absolutely A(C)-closed space is absolutely C-closed.

a) If C is additive, then absolutely A(C)-closed spaces and abso-
lutely 6 -closed spaces coincide.

b) If C is additive and semiregular, then absolutely C-closed spaces
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and absolutely A(C)-closed spaces coincide.

Proof. The first part follows from the fact that every 0(C)-closed
subspace is also C-closed (cf. Lemma 2.1 in [D2]).

a) According to a general result in [D2, Theorem 4.8] for an ad-
ditive closure operator C, cA(c) coincides with C°° on A(C).

b) Assume C is’ additive and semiregular. According to Theorem
4.9 of [D2] co(c) coincides with Coo on A(C). This proves b). 0

Let us mention that all particular cases considered above are
corollaries of this theorem, since all three closure operators were ad-
ditive and semiregular. According to [D2, Section 6] 0-closure is

semiregular, so item b) of Theorem 2.1 yields that the absolutely 0-
closed spaces coincide with the absolutely Ury-closed spaces (note
that X E Ury iff the diagonal of X x X is 0-closed). According to
[DG2] a Urysohn space X is absolutely Ury-closed iff each open U-
cover of X admits a finite subcover (a cover {Ua} of X is a U-cover if
the family {XBcl8(XBUa)} is still a cover of X). An extension of this
characterization to S(n) (resp. S(a)) can be found in [DG2] (resp.
[D1 ] ) .

For non-semiregular C, item b) of Theorem 2.3 is no more true
as Example 2.5 in [DGo] shows with C = 0’: there exists a sequen-

tially compact US-space which is not absolutely US-closed (note that
sequentially compact US-spaces are sequentially US-closed, i. e. ab-

solutely a-closed).
If P is such that cp coincides with K on P, then necessarily

P C Haus ([S]). Now obviously absolutely P-closed spaces coincide
with P-closed ones. This occurs for P = Haus, Reg, Tych, 0-dim.

In general for P C Haus the closure operator cp is coarser than
K, that is why every absolutely P-closed spaces is P-closed. The next
example shows that this may occur independently on the fact that cp
coincides with K on P.
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2.4 EXAMPLE. A space (X, T) E FHaus is FHaus-closed iff the space
(X, Tw) is compact, where Tw denotes the (Tychonov) topology on X
generated by all continuous real-valued functions of (X,T) ([Ba] or
[BPS]). In such a case (X,T) is also absolutely FHaus-closed. In fact,
if (X, T) is a subspace of (Y, T’) E FHaus, then the inclusion map
i : (X, Tw,) -&#x3E; (Y, T’w) is continuous, so that the compactness of (X, Tw,)
implies i is an embedding. Again by the compactness of (X, T,) it

follows that i(X ) is closed in (Y, T:V). It remains to note that CgHaus
coincides on Y with T’w, ([DT]).

In most of the known cases the absolutely (C, P)-closed spaces
are stable under taking continuous images (with sober spaces being an
exception). It should be noted that for topological groups or modules
this property is heavily missing even in the case of K (see [DTO] or
[DU]).

Finally, one can extend the problem of the existence of sufficiently
many sequentially closed spaces to the general case by means of the
following

2.5 DEFINITION. Let C be a closure operators of Top. The class P has
enough absolutely (C, P)-closed spaces if for each X E P there exists
an embedding X - Y such that Y is absolutely (C, P)-closed and X
is C" -dense in Y.

3. Proofs of the main theorems.

In this Section we consider only Tl-spaces. Recall that Top, con-
tains the categories US, SUS, Haus, Reg, Tych and 0-dim which
are relevant to our main results.

3.1 LEMMA. For every topological space X there exist topological
spaces X and X containing X as a subspace, such that :

a) X is a - dense in X and X;
b) every sequence in X has a subsequence converging in X;
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c) every (countably) infinite set in X has an accumulation point
in X;

d) if X E US, then X E US;

e) if X E SUS, then X E SUS.

Moreover, X is sequentially compact (resp. countably compact)
iff X = X (resp. X = X ).

Proof. Consider the family SX of all countable subsets of X with
no converging subsequences (hence sequentially closed in X) and let
DX be the subfamily of Sx consisting of all discrete closed countable
subsets D of X. Clearly X is sequentially compact (resp. countably
compact) iff SX = 0 (resp. Dx = 0). Fix a maximal almost disjoint
family N in Dx and choose a maximal almost disjoint family .M in
SX containing N. Now define X to be the set X U .M equipped with
the following topology: X is open in X and basic neighbourhoods of
points D E M are {D} U U where U is an open subset of X such that
DBU is finite. Now let X be the subspace of X with underlying set
x u N.

Clearly, for every D E Nl and any enumeration of D, the sequence
D converges to the point {D}of X. This proves a). For every sequence
S in X with no converging subsequences, there exists a D E .M which
has an infinite intersection with S. Hence the subsequence D fl S of S
converges in X. This proves b). Analogously c) can be proved.

Assume that X E US. To prove that also X E US consider a
converging sequence xn -&#x3E; x in X. If x = {D} E M, then according
to Lemma 1.2 in [DGo] the sequence {xn} is definitely contained in D.
Thus no other point { D’} E .M can be a limit point of the sequence.
On the other hand, by the choice of {D} E .M the sequence {xn}
has no converging subsequences in X, so in particular it has no limit
points in X.

If x E X, then by X E US the sequence has no other limit points
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in X. The above argument shows that such a sequence cannot have
limit points out of X . Therefore X E US.

Now assume that X E SUS. To prove that also X E SUS con-
sider a converging sequence Xn ---7 x in X. If x = {D} E N, then
according to Lemma 1.2 in [DGo] the sequence (zn ) is definitely con-
tained in D. Thus no other point (D’ ) E N can be an accumulation
point of the sequence and by the choice of {D} EN the sequence {xn}
has no accumulation points in X . Thus ± E SUS in this case.

If x E X, then by X E SUS the sequence has no other accumu-
lation points in X. Thus the subset F = {x} U {xn : n E N} of X is
closed and for each DEN the intersection F fl D is finite. Thus for
the open subset U = XBF of X the set {D} U U is a neighbourhood
of {D} avoiding the sequence {xn}. This argument shows that the

sequence {xn} cannot have accumulation points out of X. Therefore
X E SUS. o

There is no hope to establish a stronger separation property of
X even if X E Haus (take for example the space X in Example 1.3).
On the other hand, X E SUS does not guarantee X E SUS. In fact,
for every compact non sequentially compact Hausdorff space X (for
example X = (3N, the Stone-Cech compactification of N) X = X =1= X
and obviously the latter space is not even SUS since X is sequentially
SUS-closed and o-dense in X.

Proof of Theorem 1.2.

For a space X consider the ordinal chains of spaces {Xa} and
{ X a } defined as follows:

a) Xo = X, Xc,,+l = Xo: and X, = U{Xa : a:  B} for limit P
has the final topology with respect to all inclusions Xa-&#x3E; Xa, a  (3;

b) X(0) = X, X(a+1) =X(a) and X(B) = U(X(a) : a  B} for
limit (3 has the final topology with respect to all inclusions X(’) -&#x3E;
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The space Xwl is countably compact, while X(w1) is sequentially
compact. In fact, let Z C Xwl be countably infinite. Then Z C Xa
for some cY  w1. By Lemma 3.1 c) Z has an accumulation point in
Xo+1. Analogously, if Z C X(W1) then Z C X(’) for some cx  w1. By
Lemma 3.1 b) Z has a converging subsequence in X(a+1) .

If X E SUS (resp. X E US), then every Xa E SUS (resp.
X(’) E US). We prove it by transfinite induction. The step from Xa
to Xa+1 (resp. from X(’) to X (a+1 ) ) follows from the above lemma.
If for a limit ordinal (3 all Xa E SUS (resp. X(a) E US) for a  (3,
then for every converging sequence xn -&#x3E;z in Xg (resp. X (B )) there
exists a  B such that x E Xa (resp. x E x(a)), so the inductive
hypothesis applies since Xa (resp. x(a)) is open in XB (resp. X(f3)),
so contains almost all zn. 0

Proof of Theorem 1.3.

The main step of the proof given below implies that for no epire-
flective subcategory P of Top containing a non-singleton space and
consisting of Hausdorff spaces, the following extension problem has a
solution:

For every X E P there exists a countably compact space Y E P
contazning X as a a’-dense subspace.

Main Step. There exists a Tychonov zero-dimensional pseudocom-
pact space X such that every countably compact space Y containing X
as a °°-dense subspace is non Hausdorff.

Fix a regular cardinal p &#x3E; 2’ and set Z = B p. Let D be a disjoint
family of countable subsets of p with IDI = p. For each D E D fix a

countable discrete set SD C DZB D and put VD = SDZ BSD. Let

and
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Claim 1. The space X is pseudocompact.

Proof. Suppose X is not pseudocompact, then there exists a contin-
uous unbounded function f : X - R. It is easy to conclude that for

some Do E D the restriction of f on S’o = S’Do is unbounded. We may
and shall assume that there are s n E So and neighbourhoods Un of s n
such that :

For each n E w, pick up qn E Un n p. Put Q fq,, : n E W}.
Because of 3) and 4), QZ n S0 z = 0 so QZ C X which is impossible
by 1). o

Assume that Y is a countably compact space containing X as a
oo-dense subspace.

a) If some point y E YBX belongs to infinitely many sets SDn Y,
then Y is not Hausdorff.

Let D1 ... Dn ... be distinct members of D such that y E S Dn Y for
each n. Let Fn be the filter on SDn of traces of the neighbourhoods of
y on SDn and let lfn be an ultrafilter on SVn containing 0n. Denote
by zn the point of VDn corresponding to this ultrafilter. Then the

closure A of the set fZn : n E N} taken in Z is not contained in W.
In fact, assume, that A C W, then clearly A is contained also in the
(disjoint) union of the clopen sets Dn. Then by the compactness of A
only finitely many of them cover A - a contradiction in view of zn E Dk
for k# n.

Choose p E ABW, then p E X, while y V X, so that y # p. Let
us see now that these points cannot be separated by disjoint neigh-
bourhoods in Y. In fact, let V be an open neighbourhood of p in
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Y. Then there exists an open neighbourhood V’ of p in Z such that
V’ n X = V. Now zn E V’ for some n E N. Therefore, being V’ also
an open neighbourhood of zn we have V’ n SDn E lFn. On the other
hand, each open neighbourhood U of y satisfies U n SDn E Fn C lF n
Hence U n Vc Un V n SDn#0.

From now on we assume that every point y E YBX belongs to
finitely many sets 3D Y. This yields

In fact, by the countable compactness of Y, there exists a point yD E
SDY BSD for every D E D. By our assumption the correspondence
E) -&#x3E; YBX defined by the assignment D H yD is finitely many-to-
one, hence (1) results by the choice of D.

Next we prove that:

b) if there are infinitely many D E D such that there exists a
sequence TD in SD converging in Y, then Y is not Hausdorff.

Assume that D1, ..., Dn, ... are distinct members of D such that
for each n there exists a sequence Tn in SDn converging in Y. Put

tn = lim Tn and let v be an accumulation point of the set {tn : n EN}.
Arguing as above we find a point p E ABW, where

F being the filter on N generated by the filter base F(U) = In :
Tn BU is finite}, where U is a neighbourhood of v in Y. If p = v we

chose p’ E A B Wand p’ # v. This is possible, since the argument show-
ing that A g W gives also |A B WI | &#x3E; 1. So we obtain again two distinct
points in Y which cannot be separated by disjoint neighbourhoods.

From now on we assume that there are finitely many D E D such
that there exists a sequence TD in SD converging in Y. Denote by D’
this finite subset of D.
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To finish the proof assume that Y is Hausdorff, we will show that
then IYBX| 2c results, in contradiction with (1).

Now we use that fact, that Y = o-ooY (X ) and we show, that YBX
is contained in the closure of the countable set E = UISD : D E D’}.
Therefore, |VBX |  2’, since E is countable and Y is Hausdorff by
assumption.

Pick y E YBX, then y E ap(X). Since K = K°° = KK°° &#x3E;

Ko-°°, y E o-ooY (X ) yields y E Ko-(X ). Hence each open neighbourhood
U of y in Y meets O"y(X). If z E Uno-Y(X), and z =Iimx,,,X.,, E X,
then almost all zn are in U. This proves that every open neighbour-
hood U of y in Y contains a sequence T in X converging in Y. Since Y
is Hausdorff such a sequence can be contained only in U{SD : D E D}.
It is not possible to have all intersections T nSD finite, since then T
would have also an accumulation point in X, which contradicts Haus-
dorffness of Y. Thus T must be contained in a finite union of the sets

SD. On the other hand, if T n SD is infinite for some D E D, then
clearly D E D’. This proves, that y E E. 0

Remark. In the next proof the countable compactness of Y, used
in the proof of (1) to produce the points yD, will be weakened to
pseudocompactness (with X replaced by a subspace X1).

We have produced a zerodimensional pseudocompact space X
which shows that the countably compact extension problem mentioned
in the beginning of the proof of Theorem 1.4 has no solution. To a
completely different effect leads the assumption that Y is pseudocom-
pact. In this case we can prove that for every Tychonov space X there
exists a pseudocompact Hausdorff extension Y = Px such that X is
sequentially dense in PX.

Proof of Theorem 1.5. Here we adopt the following characteriza-
tion of pseudocompact spaces: X is pseudocompact iff every locally
finite family of non-empty open sets in X is finite.

Let lX denote the set of all locally finite countably infinite fami-
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lies D = {Dn}oon=1 of open pairwise disjoint sets of X . Note that X is
pseudocompact iff lx = 0. For each D E lX define a one-point exten-
sion XD of X by letting X to be open in XD and declaring the extra-
point p(D) of XD to have basic neighbourhoods Un = p(D)UUk&#x3E;n Dk.
Define analogously the extension Xx when F is a subfamily of ,Cx -
now Xy B X is discrete and for D E ,Cx the subspace X U (p(D) } of
Xo has the same topology as X D . One can easily prove that X is
0" -dense in Xy, as well as the following:

Claim 2. If X is Hausdorff and D, D’ E ,Cx then the following
assertions are equivalent:

a) the extension X{D,D’} is Hausdorff.

b) D E lX{D’}’ i.e., the family D is locally finite in X { D’ } .
bl) D’ E LXIDI - 
c) there exist n, m such that (Uk&#x3E;n Dk)nUk&#x3E;m D’k = 0.
For D, D’ E LX satisfying the above equivalent condition we say

briefly: D and D’ are almost disjoint. Families F C ,Cx consisting of
pairwise almost disjoint members will be called almost disjoint. By a
standard application of Zorn’s lemma one can prove that every almost
disjoint family F C ,Cx is contained into a maximal almost disjoint
family M C ,Cx, i.e., there exits no almost disjoint family N C ,Cx
properly containing M. Now X,M is pseudocompact since lcxm = 0,
i.e. every locally finite family of open sets of XM is finite.

Now take p, Z and D as in the proof of Theorem 1.3. Set

The space Xi is obviously a subspace of the space X defined in
the proof of Theorem 1.4, so that X1 is zero-dimensional. Now we

prove that X1 does not admit a pseudocompact Urysohn extension Y
such that Xi is o8-dense in Y.

First we prove the following :
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Claim 3. There are finitel y many D E D such that there exists a

sequence TD in D converging in Y.

Assume that D1, ..., Dn, ... are distinct members of D such that
there exists for each n a sequence Tun - tn, Tn g Dn, converging
in Y. Let Tn = {wnj : j E w} and put On = {wn2j+1 : j E w},
En = 2j : j E wl. For each n , pick ultrafilters an E OnZ On and
nn E En*ZBEn. Choose an ultrafilter F on N and define u = EFon and
q = EFnn. Then {o, ql C X1. Moreover, a and q cannot be separated
by disjoint closed neighbourhoods in Y. In fact, take a neighbourhood
U of o and a neighbourhood V of q in Y. Then there is no E w such
that IOna n UI = lEna n vl= w, so we obtain tn0 E U V.

As in the proof of Theorem 1.4 we can prove that every point
y E YBX1 belongs to finitely many sets DY (replace SD in that proof
by D). This yields (in analogy to (1)) |YBX1|&#x3E; p. Now the countable
compactness of Y, used in the proof of (1) to produce the points yD,
is replaced by pseudocompactness. In fact, every D E D is clopen and
discrete in X. Since Y is T1 and X1 is dense in Y, each point of D is
open in Y, so that D is actually a countable family of open subsets of
Y. By the pseudocompactness of Y there exists a point yD E SDYBSD.
By our previous remark, the correspondence D -&#x3E; YBX defined by
the assignment D H yD is finitely many-to-one, hence |YBX1|&#x3E; p
results by the choice of D.

Claim 3 immediately yields |YBX| 2c in contradiction to what
we have just established.

To finish the proof of Theorem 1.5 it remains to note that sequen-
tially Reg-closed spaces are pseudocompact ([Go1]). 0

Remark. Let us note that the space Xl admits a pseudocompact
Urysohn (in fact, zerodimensional) extension, namely the space X.
However, X1 is a-closed in X.
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