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HANDLE-DECOMPOSITIONS OF PL 4-MANIFOLDS
by Maria Rita CASALI and Luca MALAGOLI 

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVIII-2 (1997)

R6sum6. Dans cet article, on étudie les relations entre les
d6compositions avec anses des 4-variétés PL et l’invariant combi-
natoire appel6 genre régulier. En particulier on obtient les car-

act6risations suivantes des 4-variétés PL M4 (avec fronti6re vide
ou connexe aM4) v4rifiant certaines conditions relatives au genre
r4gulier g(M4), au rang de leur groupe fondamental rk(rr1(M4)), et
au genre r6gulier de leur fronti6re 9(aM4):

ou S3 x S1 d6signe le fibr4 en 3-sph6res sur S’ orientable ou non, et
1~1

1~1

ou Ys d6signe le corps avec anses a 4 dimensions orientable ou non
de genre s &#x3E; 0. Enfin, comme consequence de ces r6sultats et de
leur généralisation au cas de fronti6res non-connexes, on compl6te la
classification des 4-varietes PL avec fronti6re jusqu’au genre 2; plus
precisement, on prouve que les seules 4-variétés premières de genre

sont

1. Introduction.
It is well-known that each closed 4-manifold M4, admitting a handle-

decomposition

(*) Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National
Research Council of Italy) and financially supported by M.U.R.S.T. of Italy (project
"Topologia e Geometria")..
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- where H(p) = DP X Dn-p denotes a handle of index p (or a p-handle) - is
completely determined by the handles of index  2: see [M], or Proposition
1 in the third section. In particular, if M4 admits a handle-decomposition
where no 2-handle appears, then M4 = #r1 (S3 X S1), where S’ X S1 denotes

,-1 i-i

either the orientable or non-orientable 3-sphere bundle over 81, according
to M4 being an orientable 4-manifold or not, and the symbols means

PL-homeomorphism.

Extending to the boundary case the above characterization is the first aim
of the present paper; in fact, the third paragraph is entirely devoted to prove

I~I 
(1) (1)the following statement, where Ys = H(°) U (H1 U ... U Hs(1)) denotes either

the orientable or non-orientable 4-dimensional handlebody of genus s &#x3E; 0.

Theorem I. If M4 (with empty or connected boundary aM4) admits a
handle-decomposition where no 2-handle appears, then

if I

if M4 is orientable with aM4 # 0
if M4 is non-orientable and OM4 is orientable

if both M4 an d 8M4 are non-orientable

Further, we study the relationship between handle-decompositions of 4-
manifolds (in the particular case considered in Theorem I) and the so called
crystallization theory, which represents PL n-manifolds by means of pseu-
dosimplicial triangulations admitting exactly n + 1 vertices.

Within this representation theory (which is reviewed in the second para-
graph), a combinatorial invariant - i.e. the regular genus - has been defined,
which extends to arbitrary dimension the classical notions of genus of a sur-
face and of Heegaard genus of a 3-manifold.

In the present paper we prove that the 4-manifolds M4 involved in The-
orem I are characterized by the equality between their regular genus 9(M4)
and the rank of their fundamental group rk(rr1(M4)).
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Theorem II. Let M4 be a PL 4-manifold with empty or connected bound-

ary aM4. Then:

either or

Moreover, the following condition about regular genus is proved to ensure
that the 4-manifold belongs to the class handled in Theorem I.

Theorem III. Let M4 be a PL 4-manifold with empty or connected bound-

ary âM4. Then:

The proofs of Theorems II and III are exposed in the fourth paragraph,
while in the fifth one we generalize all the obtained results to the case of
disconnected boundary. Finally, in section six - as a consequence of the

whole work - we complete the classification of PL 4-manifolds with (possibly
disconnected) boundary up to regular genus two (see Proposition 6 and

Tables 1 - 2 - 3).

2. Preliminaries.
In this section we shortly expose the representation theory of PL-manifolds

by means of coloured graphs, for which we refer to [FGG], [BM], [Co] and
[V]. On the other hand, elementary notions of graph theory may be found in
[Ha], while [RS] constitutes an useful reference about piecewise-linear (PL)
category.
An (n + l)-coloured graph (with boundary) is a pair (F, y) where h =

(V(F), E(F)) is a multigraph (for more simplicity we shall call it a graph)
and y : E(r) -+ On - {0, 1, ... , n} is a proper coloration of E(F) on An
(i.e. y(e) # y(f) for every adjacent edges e, f E E(F)). The coloured graph
(F, 7) will be often denoted by the only letter F of its underlying graph.

For every subset B C Dn, a (possibly disconnected) graph FB =
(V(F), y-1(B)) is well defined; its connected components are said to be B-
residues of F, or m-residues if m is the cardinality of B. An m-residue is said
to be internal if it is a regular graph of degree m; otherwise, it is said to be a
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boundary residue. If B = {i0, i1..., ih}, then we denote by gi0,i1,...,ih (resp.
gi0,i1,... lih ) (resp. 9io,il’’’. ,ih) the number of B-residues of F (resp. internal

(3-residues) (resp. boundary (3-residues). Later on, we shall write i instead
of 0 = On - {i}.
An (n + 1)-coloured graph (F, q) is said to be regular with respect to the

colour i E Un if each z-residue is internal. Let Gn+1 be the class of all
(n + 1)-coloured graphs regular with respect to the color n E Dn ; note that,
if (F, ,)E Gn+1 , then every vertex v E V(F) must have either degree n (v
is called a boundary vertex) or degree n + 1 (v is defined to be an internal
vertex.

If (F, y)EGn+1, we call boundary graph associated to (F, y) the (regular)
n-coloured graph (9r, 8-y) constructed as follows:
w V(8T) is the (possibly empty) set of boundary vertices of F;
O two vertices v, w E V(8T) are joined by an edge e of colour ay(e) = I E
An-1 iff v and w below to the same (boundary) f i, nl-residue of I.

Obviously, a(ar) = 0; moreover, for each B = {i0,i1,..., ih) C Dn-1, the
number agp of B-residues of 8T satisfies the relation 8gio,il,... ,ih = gi0,i1,... ,ih,n.

The starting point of the representation theory of PL-manifolds by means
of edge-coloured graphs is the possibility of associating an n-pseudocomplex
(see [HW]) K = K(F) to every graph (F, y)EGn+1 :
. consider an n-simplex o-(v) for each element v E V(h) and label its n + 1

vertices by the n + 1 colours 0,1, ... , n ;
9 if v, w E V(F) are joined in F by an edge of colour i, then identify the

(n - 1)-faces of o-(v) and a( w) opposite to the vertex coloured by i, so
that equally labelled vertices coincide.
The (n + 1)-coloured graph (F, y)E Gn+1 is said to represent the polyhe-

dron |K(F)| and every homeomorphic space.
It is important to note that, for every (F, y)e Gn+1 and for every B =

{i0, i1, ... , ih} C An, each B-residue of h uniquely corresponds to an (n -
h - l)-simplex o-n-h-1 E K(F), whose vertices are coloured by On - (3; as
a consequence, K(h) results to be an n-manifold (with boundary) iff the
pseudocomplex K(E) is homeomorphic either to the (n - l)-sphere Sn-1 or
to the (n - I)-ball Dn-1, for each t-residue E of F, i C An (see [FGG] for
details).
A coloured graph (F, y)e Gn+1 is said to be a crystallization of an n-

manifold Mn (with empty or connected boundary) if (F, y) represents Mn
and Fî is connected for every i E Dn.
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By theorems of [P] and [Ga2], it is known that every n-manifold Mn ad-
mits a crystallization (r, 1’), and that F results to be bipartite iff Mn is
orientable; moreover, if aMn 0 is connected, then (8 F, 8,) is a crystalliza-
tion of aMn ([CG]).

The notion of regular genus was introduced in [Gal] for closed manifolds
and extended to the boundary case in [Ga3]. 

For each coloured graph (r, -y)E Gn+1, and for every cyclic permutation
e = (e0 , ... , en-1,en = n) of Dn, it is proved the existence of a 2-cell embed-
ding (see [Ga3l) of F onto a suitable surface Fe, which results orientable iff
r is bipartite and closed iff aF = 0. The regular genus ge(T) of (F, y) with
respect to the permutation E is defined as the classical genus (resp. half of

the genus) of the orientable (resp. non-orientable) surface Fe ; it may be com-
puted by means of the following formula, where p and p respectively denote
the number of internal and boundary vertices of r:

The minimum value G(Mn) of these ge(F), computed by changing the
crystallization (F, Î) of the manifold Mn and the permutation E, is said

to be the regular genus of Mn. As far as its properties are concerned, we
only remember that it extends to arbitrary dimension the classical notions
of genus of a surface and of Heegaard genus of a 3-manifold; moreover, for
every n-manifold Mn with 8Mn =1= 0, relation g(Mn) &#x3E; f(aMn) holds (see
[CP]).

3. 4-manifolds obtained by (partial) boundary identification of
handlebodies.

Purpose of the present section is to prove Theorem I; for convenience, we
will restate it by making use of the process of (partial) boundary identification
of two handlebodies.

1-1 1 ~1

If Yp and Yq (0  p  q) are two fixed 4-dimensional handlebodies, then
I~I I~I 

we call attaching map every regular embedding cp of type cp : 8 Yp - a Yq
I~I I~I

(in case p = q) or Sp : a Yp - int(D3) -+ aYq, D3 being a 3-ball contained
I~I I~I I~I 

into 9YP. We will denote by Yp Ucp Yq the identification space of the two
handlebodies via the map cp.
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It is now easy to check that Theorem I (as it is stated in the Introduction)
is equivalent to the following:

Theorem I’. Let M4 be a 4-manifold admitting a decomposition M4 =
I~I I~I I~I I~I 

Yp Ucp Yq, by means of suitable Yp, Yq and cp, with 0  p S q.

(a) If M4 is closed, then p = q and M4 = #p(S3 X S1). 
I~I 

I~I 

(b) If 8M4 i 0, then M4 #p(S3 X S1)#Yq-p.
I~I 

We shortly recall that in dimension  4, PL and DIFF categories may be
identified (see [KS]). This allows us to translate from DIFF-category into
PL-category the following theorem related to the extension of boundary dif-
feomorphisms of a 4-dimensional handlebody; for its proof, we refer to [M],
[Ce], [L] and relative bibliography.

Proposition 1 (Extending theorem). For each homeomorphism cp :
I~I I~I i-1 

8Yp - 8Yp, p &#x3E; 0, there exists a unique self-homeomorphism o of Yp
(up to isotopy) extending cp. D

It is easy to check that the extending theorem is the key-stone to prove
Montesinos’s result which states that closed 4-manifolds are determined by
the handles of index  2 of their handle-decomposition (see [M]); moreover, it
is quite obvious that statement (a) of Theorem I’ is nothing but a particular
case of this statement .

I~I I~I 

Note that for every fixed Yp and Yq and whatever cp may be, by extending
theorem we can always suppose that the boundary of each orientable (resp.

I~I 

non-orientable) handle of Yp is identified (at least partially) with the bound-
I~I 

ary of a corresponding orientable (resp. non-orientable) handle of Yq, which
will said to be covered by cp.

In spite of directly proving Theorem I’ (part (b)), we will prove the fol-
lowing result, which takes into consideration all the cases that may arise.

Lemma 1. Let M4 (with 8M4 =1= 0) be a 4-manifold admitting a decompo-
I/"VI I~I I~I I~I

sition M4 = Yp Ucp Yq , by means of suitable Yp, Yq and cp, with p  q.



147 -

(iv) If cp: aYp - int(D3) --+ aYq, and the handles of Yq not covered by cp are
all orientable, then M4 #p(S3xS1)#q-p.

(v) If cp : aYp - int(D3) --+ aYq, and at least a non-orientable handle of Yq is
not covered by W, then p  q and M4 #p(S3 X S1)# Yq-p.

I~I

Proof. Case (i) Since cp is a homeomorphism on the image, cp(aYp -
I~I I~I

int(D3)) = aYp - int(D’3) holds, D’3 being a 3-baR into aYp. Let
1-1 1-1

o : aYp -+ 9 Yp be a homeomorphism that extends cp in natural way to
I~I 

the whole boundary of Yp ; since D 3 UW D 3 - S3 is the boundary of a 4-ball
I~I I~I I~I I~I

D4, then Yp U cpYp = (Yp Uo Yp) - int(D4). Statement (i) now directly
follows from the closed case.

Case (ii) Using the homeomorphism Yq = Yp a#Yq-p (true for each 0 
p  q) and the property X - int(D4) = X#D4 (true for any 4-manifold X),
we have: M4 == Yp Up y q (Yp Ucp Yp)a#Yq-p = [#p(S3 X S1)#D4]a#Yq-p =
#p(S3 X S1)#Yq-p. 

Case (iii) Since Yq is non-orientable, while all the handles covered by cp

are orientable, p  q must obviously hold. If we consider Yq = Yp a#Yq-p,
where Yp represents the handles covered by cp, then M4 == Yp UW (Yp Ucp
Yp)a#Yq-p = #p(S3xS1)#Yq-p yields; thus, both and result to be
non-orientable.

Case (iv) Let us consider Yq = Yp a#Yq-p, where Yp represents the handles
of Yq covered by cp. Then, M4 = Yp Ucp Yq = (Yp Ucp Yp)a#Yq-p = #p(S3 X
S1)#Yq-p is obtained, and M4 results to be non-orientable with orientable
boundary.

Case (v) Similarly to the case (iii), p  q must hold. Moreover, we have

M4 = Yp Ucp Yq = (Yp Ucp Yp)a#Yq-p = #p(S3 X S1)# Yq-p; thus, both M4 and
aM4 result to be non-orientable. 

~ 

D

Remark 1. It is not difficult to check that the manifolds #p(S3xS1)#Yq-p
and #p(S3XS1)#Yq-p (with p  q), determined in cases (iii) and (v) of the

previous Lemma, result to be homeomorphic; for, it is sufficient to extend to
dimension 4 Theorem 3.17 of [He].
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Proof of Theorem I’. The statement is now a direct consequence of Lemma
1. D

4. Main results.

From now, M4 will denote a connected PL 4-manifold, with empty or
connected boundary âM4. Let (F, ,)E G5 be a crystallization of M4, k =
K(F) the associated pseudocomplex and - - (e0,e1,e2,e3,e4 = 4) a cyclic
permutation of 04. For each colour i E A4 , we denote by E, the permutation
induced by E on A4-{i}. In order to simplify the notation, the regular genera
Qe(F), Qe4(aF) and Qei(Fei) will be respectively indicated by the symbols fl,

Be and Qi; moreover, we will often use the only letter i in order to denote the
colour ei.

If M4 has empty or connected boundary, then the regular genera men-
tioned above are related with the number of 2- and 3-residues of F, as

it is stated in the following formulas (where the indexes are considered in
Z5); they may be easily obtained from [Ca1; Lemma 2], by recalling that
Be = ge0e24 - 1 = ge1e34 - 1 (see [FGG] for details concerning crystallizations
of closed 3-manifolds).

We now introduce a further useful notation. Since M4 is assumed to

be either closed or with connected boundary, K(F) contains exactly five
vertices, which may be labelled by v0, ... , v4, so that the vertex vi cor-

responds to the t-residue Fi, for every i C A4. Then, for every subset
{i0,..., ih} C A4, let K(i0, ... , ih) denote the h-dimensional subcomplex
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of K generated by the vertices Vio , ... , vih , let [i0,..., ih] denote the total
number of h-simplexes of K(i0, ... , ih), and let N(i0, ... i h ) be a regu-
lar neighbourhood of IK(io,... , ih)1 | into IKI. Finally, for every cyclic per-
mutation E and colour i of A4 , let 0(i), 1(i), 2(i), 3( i) be the elements of
A4 - fil such that = (O(i) , 1(i), 2(i), 3(i)); note that we may always as-
sume that the regular neighbourhoods N(i, 1(i), 3(i)) and N(0(i), 2(i)) (which
are 4-dimensional sub-manifolds of M4 with connected boundary) give rise
to the decomposition M4 = N(i, l(i), 3(i)) U N(0(i), 2(i)) (where the two sub-
manifolds intersect only on their (partially identified) boundaries)..

In the present section, we will find suitable conditions about the regular
genus of h, so that the previously described decomposition of M4 consists
of the union of two handlebodies (and so we can classify M4 by means of
Theorem I’).

First, we give a general result about the structure of K(i, 1(i), 3(i)).
Lemma 2. Let (1-’, y) be a crystallization of a 4-manifold M4 (with empty or
connected boundary âM4) and let e be a permutation ofA4. For every colour
t E A4, the 2-pseudocomplex K(i, 1(i), 3(i)) contains exactly [i, 1(i), 3(i)] ==

1 (i) ] + [i, 3(i)] + oi - 1 triangles.

Proof. Let i E A4 be a fixed colour. By direct construction of K = K(h) from
(F, 1), it is known that the number of triangles into K(i, 1(i), 3(i)) equals the
number of f 0(i), 2(i)}-residues of r, i.e. [i, 1(i), 3(i)] = g0(i), 2(i). Moreover, it
is not difficult to check that, whichever the colour i may be, there exists a
colour r E A4 - fil such that {0(i),2(i)} = {r-1, r+1} and 4 V {r-1, r+1}.

In particular, the following two cases arise.
. If i E {0,3,4} then (0(i), 1(i), 2(i)) = (r-1, r, r+1) and f i, 1(i)} = {s-1, s+

1}, for a suitable s :/ 4; thus, formula (1r) gives g0(i)2(i) = g0(i)i(i)2(i) +
o - Q1(i) = [i, 3(i)] + Lo - Q1(i) and formula (2S) gives g2(i)3(i)0(i) = [i, 1(i)] =
1 + Q - Q1(i) -g2.

. If i E {1, 2} then (2(i), 3(i), 0(i)) = (r-1, r, r+1) and {i, 3(i)} = {s-1, s+
1}, for a suitable s # 4; thus, formula (1r) gives 90(&#x26;)2(&#x26;) = g2(i)3(i)0(i) +
Q - Q3(i) = [i, 1(i)] + Q - Q3(i) and formula (2s) gives g0(i)1(i)2(i) = [i,3(i)] =
1 + n - Q3(i) - Qi. 
In both cases, an easy computation proves the statement. 0

We are now able to state the technical Lemma on which many results of the

present paper base themself.
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Lemma 3. Let (T, ,) be a crystallization of M4 and E a permutation ofA4 .
If there exists a colour i E A4 such that Qi = 0, then we have:

(a) if M4 is closed, then M4 = #ac(S3 X S1), where
I~I

ac = Q - Q0(i) - Q2(i) = Q - Q1(i) - Q3(i) ; 
I~I

(b) if M4 has connected boundary, then M4 = #B(S3 X S1)#Yn, where
I~I

and

Proof. Let M4 be either closed or with connected boundary, and let K =

K(F) be the pseudocomplex associated to (.h, y); we will classify M4 by
making use of the above described decomposition M4 = N(i, 1(i), 3(i)) U
N(O(i), 2(i)), where i E A4 is such that oi = 0. At first, we note that Lemma
2 - together with the hypothesis Qi = 0 - ensures that the pseudocomplex
K(i, 1(i), 3(i)) contains exactly [i, 1(i), 3(i)] = [i, 1(i)] + [i, 3(i)]-1 triangles.

Thus, into K(i, 1(i)) there are m edges e1 , ... , cm , 0  m  [i, 3(i)] - 1,
which are face of at least two triangles of K(i, 1(i), 3(i)).

If m = 0, then we have necessarily [i, 3(i)] = 1, and K(i, I( i), 3(i)) col-

lapses to K(l(i), 3(i)).
If m &#x3E; 1, then K(i, l(i), 3(i)) collapses to I(’ = K(i, 3(i)) U K(1(i), 3(i)) U

{ei,... , em} U {T1,..., Til, with I = m + [i, 3(i)] - 1; thus, [Cal; Lemma 5]
ensures that I(’ collapses to the graph K(1(i), 3(i)), too.

In both cases, the number of edges of the 1-dimensional pseudocomplex
K(1(i), 3(i)) may be computed by means of formula (2j), for a suitable choice
of the index j C A4: [I(i), 3(i)] = 1 + Q - Q1(i) - e3 . This obviously implies

I~I 

that N(i, 1(i), 3(i)) = Yac, where ac = o - Q1(i) - e3 (&#x26;) .

Now, as far as the structure of the graph K(0(i), 2(i)) is concerned, it is useful
to remember the existence of a colour r C A4 - fil such that {0(i), 2(i)} =
{r - 1, r + 11 and 4 V {r - 1, r + 1} (see the proof of Lemma 2); further,
in order to analize the decomposition M4 = N(i, 1(i), 3(i)) U N(0(i), 2(i)), the
boundary case has to be distinguished from the closed one.

(a) Let us assume that M4 is closed.
Formula (2r) yields [0(i), 2(i)] = p - Q0(i) - e2. + 1, from which

I~I 

N(0(i), 2(i)) = Yac’ with a’ = o - eô - e2. directly follows. Moreover,
OM4 = 0 implies aN(i, 1(i), 3(i)) = aN(0(i), 2(i)); thus, a = a’ follows, and
by Theorem I’(a) the manifold M4 results to be homeomorphic to #ac(S3XS1).

1~1 
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Note also that in this case we have Q0(i) + Q2(i) = Q1(i) + Q3(i). 
(b) Let us now assume that M4 has connected boundary.

First of all, note that the existence of an edge of K(O(i), 2(i)) which lies into
the boundary of K does not affect the topological structure of N(O(i), 2(i)),
since its regular neighbourhood is a collar of a 3-ball D3 embedded into 8M4.

Thus, instead of studing h(0(i), 2(i»)’ we may consider its subcomplex
K(0(i), 2(i)), which consists of all edges of K(0(i), 2(i)) which are internal in
K and of exactly one boundary edge: by formula (3r) (where r E A4 - {i}
is such that (0(i), 2(i)} = {r - 1, r + 1} and 4 E/ (r - 1, r + 1}), k(0(i), 2(i))
results to contain exactly gi,1(i),3(i) + 1 == fl - 8 fl - Q0(i) - Q2(i) + 1 edges.

Hence, if N(0(i), 2(i») denotes the regular neighbourhood of K(0(i), 2(i»)
in K, M4 admits the decomposition M4 = N(i, 1(i), 3(i)) U N(0(i), 2(i)) ==
I~I I~I

Yac U YB, where ax = Q - Q1(i) - Q3(i) and B = Q - aQ - Q0(i) - Q2(i) ; moreover,
I~I I~I I~I I~I

since k(0(i), 2(i)) contains a boundary edge for I(, Ya n YB = aYg n 8 YB =
I~I I~I

8 YB-int(D3) follows, and the attaching map is of typ e cp : 8 YB-int(D3) -+
I~I 

aYac. 
The statement (b) is therefore proved by Theorem I’(b); in particular,

I~I

M4 is homeomorphic to #B(S3 X S1)#Yac-B, and the difference ax - B =
I~I

8fl + E3n=0(-1)n Qn(i) returns the value 17 of the statement. 0

By a suitable choice of the crystallization (f, y), the indexes ac, B and n
can be simplified as follows.

Proposition 2. Let M4 be a connected PL 4-manifold, with empty or con-
nected boundary 8M4. Let (F, 7) be a crystallization of M4 and - a permu-
tation of A4 such that o = o (r) - Q( M4). If there exists a colour i E A4
so that Oi = 0, then we have:

(i) Qj = 0 for all j E A4 ;

(ii) if 8M4 = 0, then M4 = # Q(S3 X S1);
I~I

I~I

(iii) if aM4 # 0, then M4 = #Q-aQ(S3 X S1)# YaQ.
I~I

Proof. If M4 is closed, Lemma 3 (case (a)) ensures that M4 + #ac(S3 x S1),
where I Moreover,
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implies that Qn(i) = 0 for every n E A3 ; this proves both statement (i) (in
case aM4 = 0) and statement (ii).
On the other hand, if M4 has connected boundary, Lemma 3 (case (b))

I

ensures that M4 = (S3 X S1)#Yn, where B = o -a o - Q0(i) - e2 and
I~I 

17 ==8 e + E3n=0(-1)nQn(i). Moreover, since the regular genus is sub-additive
with respect to connected sum, the inequality o = g(M4)  0+,q = Q-Q1(i) -
to holds, from which eî = e3 = 0 follows. Finally, aQ &#x3E; g(aM4) = 

I~I

g(aYn) = g(#n(S2 X 81)) = 17 implies eô = e2 = 0; thus the statementsI~I 

are completely proved. 0

We are now able to prove both Theorem II and Theorem III stated in the

Introduction.

Proof of Theorem II. It is known that, for every crystallization (F, y) of
M and for every choice of f i, jl E A4, a presentation  X ; R &#x3E; for the

fundamental group 7Ti(M) of M exists, where X is the set of all (A4 - fz I il)-
residues of (F, y), but one. Thus, for example, formula (21) yields:

It is now easy to check that, if the equality rk(rr1(M4)) = o holds,
then (T, 7) satisfies the hypothesis of Proposition 2, and hence either

I~I

M4 = #Q(S3 X 91) or M4 - #Q-aQ(S3 X S1)# Y8e follow. D
I~I I~I

Now, instead of simply proving Theorem III, we will prove the follow-
ing result, that summarizes both Theorem III and the characterization of
handlebodies exposed in [Ca1: Prop. 4].

Theorem III’. Let M4 be a PL 4-manifold with connected boundary âM4.
I~I

(a) If g(M4) = g = Q(âM4), with g 2 0, then M4 = Ye;
I~I

( b) if Q(M4) = o = Q(âM4) + 1, with o 2 1, then M4 + (S3 X S1)#YQ-1.
I~I

Proof. Let us fix a crystallization (r, y) of M4 and a permutation - of A4
such that gg(f) = g(M4) = g. By making use of relations (31) and (32), and
of the inequality grst &#x3E; 0 (which holds for every {r, s, t} C A4 ), we easily
obtain:
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Now, if 0  Q - aQ  1 is assumed, then a colour i E A3 must exist
such that pt = 0. From Proposition 2, Qj = 0 for all j E A4 and M4 =

I~I

#Q-aQ(S3 x S1)#YaQ directly follow; hence, both part (a) (in case o =aQ)
I~I .

and part (b) (in case o =aQ + 1) result to be proved. 0

We conclude the paragraph by noting that the techniques involved in the
proof of Theorem III might be useful to solve the following open problem:
Is the classification of PL 4-manifolds with fixed (possibly empty) boundary

finite to one with respect to regular genus?

5. The case of disconnected boundary.
In the present section, we will extend the main results of the paper to the

case of a PL 4-manifold M4 with C &#x3E; 1 boundary components; since many
proofs essentially involve the same arguments as in the case C = 1, we will
give only the statements and the fundamental steps of reasoning.

First of all, if (F, y)E G5 is a crystallization of M4 and - = (e0, e1, E2,
E3, E4 = 4) is a cyclic permutation of A4, we set the following notations:

if
if

aQ = Eh=1 ee4 (Ah), ^1, ^2,... ̂ c being the C connected components of
aT;

Qj = ECj h=1 Qej (H(j)h), H(j)1, H(j)2, ..., H(j)Cj being the Cj connected com-
ponents of Fej (see [Ga2] for details about crystallizations of manifolds
with disconnected boundary).
Now, it is easy to check that relations (1j), (2j), (3j) and (4) of section

four admit the following generalizations (where, as usual, the letter j often
denotes the colour ej, and the indexes are considered in Z5):
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if

if

Moreover, for every fixed colour i E A4, M4 still admits the decom-

position M4 = N(i, 1(i),3(i)) U N(0(i), 2(i)) (with the same notations used
in section four, except from the fact that the h-dimensional subcomplex
K(io, ... , ih) of K is generated by all the vertices labelled by colours of the
set {i0, ..., ihl C A4).

As far as the structure of K(i, 1( i), 3(i)) is concerned, it is not difficult to
prove the following generalization of Lemma 2:

Lemma 4. Let (F, y) be a crystallization of a 4-manifold M4 (with C &#x3E; 1

boundary components) and let - be a permutation of A4. For every colour
t C A4, the 2-pseudocomplex K(i, 1 ( i) , 3(i)) contains exactly [i, 1( i) , 3(i)]
[i, 1(i)] + [i, 3(i)] + ei - Ci triangles. D

In case the existence of a colour i C A4 such that = 0 is assumed, the
structure of K(i, 1(i), 3(i)) may be analized by means of the following Lemma,
which is nothing but an extension of [Cal; Lemma 5].

Lemma 5. Let H be a two-dimensional labelled pseudocomplex, satisfying
the following properties:
i) H contains 2C + 1 vertices (with C &#x3E; 1), and exactly C of them are labelled

by colour a, 1 is labelled by colour b, and C are labelled by colour c;
it) 1  [a, c]  [a, b] - C;
iii) [a, b, c] = [a, b] + [a, c] - C;
iv) the inclusion j : H(b, c) -+ H induces an epimorphism j* : rr1 (H(b, c)) -+

rr1(H).
Then, H collapses to H(b, c). El

Lemma 5 ensures that the hypothesis oi = 0 yields N(i, 1(i), 3(i)) =

1.....,1
On the other hand, it is easy to check that M4 = N(i, 1(i), 3(i)) U

N(0(i), 2(i)), where N(0(i), 2(i)) is the regular neighbourhood of the sub-
complex of K(O(i), 2(i)), which consists of all edges of K(0(i), 2(i)) which are
internal in H and of exactly one boundary edge for each boundary compo-

I~I 1"""1

nent of H. Thus, M4 results to be decomposed in the form Yac U YB, where
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and

8Y) - UCj=1 (int(D3j)), D31,..., D3 being C disjoint disks embedded in aYB.
Finally, a trivial extension of Lemma 1 allows to prove the following gen-

eralization of Lemma 3:

Lemma 6. Let (r,,) be a crystallization of M4 (with C &#x3E; 1 boundary
components) and E a permutation of A4 - If there exists a colour i E A4 such
that o.% = 0, then

where for every and

We are now able to state the final results of the section, which are respec-
tively the generalization of Proposition 2, Theorem II and Theorem III’.

Proposition 3. Let M4 be a connected PL 4-manifold, with C &#x3E; 1 bound-

ary components. Let (F, q) be a crystallization of M4 and E a permutation
of D4 such that o - eE(r) = 9(M4). If there exists a colour i E A4 so that
ei = 0, then:

(i) Qj = 0 for all j E D4;
where for every

and

Proposition 4. Let M4 be a connected PL 4-manifold, with C &#x3E; 1 bound-
ary components. Then:

where for every and

Proposition 5. Let M4 be a connected PL 4-manifold, with C &#x3E; 1 bound-

ary components.
I~I I~I I~I

(a) If g(M4) = Q = g(aM4), with g &#x3E; 0, then M4 = Yn1#Yn2#...#YnC,
where ilj &#x3E; 0 for e very j = 1, ... , C , and EC j=1 nj = L.0;



156

(b) if Çi(M4) = e = g(aM4) + 1, with o &#x3E; 1, then

for every and

6. Classification of 4-manifolds with low genus.
In this section we will complete the classification of PL 4-manifolds (with-

out assumptions about their boundary) up to regular genus 2. For, we will
make use both of our results of sections four and five, and of the following
already known results:

I) in arbitrary dimension n &#x3E; 2, g(Mn) = 0 is proved to characterize sn
and #cDn (see [FG1] and [Ga3]);

II) for every 3  n  5, if aMn is assumed to be connected, g(Mn) =
1 f"oI 

Q(8Mn) == o is proved to characterize the handlebody Mn = YnQ (see
[Cal] and [Ca2l );

III) if aM4 = 0 and Q(M4) = 1, then M4 = 83 X 81 (see [CV1]);
I~I 

IV) if aM4 = 0 and Q(M4) = 2, then either M4 = #2(S3 x81) or M4 = CP2
1-1

(see [CV2])’

Let now M4 be a 4-manifold with (possibly disconnected) boundary; let

(T, y) be a crystallization of M4 and E = (Eo, E1, i E2 E3, e4 = 4) a permutation
of D4.

For each colour c E A3 we may construct a new coloured graph (cF,c y)
- which is said to be the c-sewing of (F, y), according with the notations of
[FG2] - by closing all {c, 4}-boundary residues of F by means of an edge of
colour 4. As proved in [FG2], (cF,c y) represents the closed pseudomanifold
M obtained by capping off each boundary component of M4 with a cone over
it; moreover, if c is consecutive to 4 in - (i.e. if either c = Eo or c = E3),
then o = Qe(F) equals cp - Qe(F). In a similar way, for each colour i E A4,
one can prove the following relations among the regular genera Qi = ee; (Fi),
8 U = Qe4 and cQi = Qei (cFi):

We are now able to classify every PL 4-manifold with genus two.
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Proposition 6. Let M4 be a connected PL 4-manifold ofgenus G(M4) = 2,
with C &#x3E; 1 boundary components.

(a) If g(aM4) = 0, then either M4 - CP2#(#cD4) or M4 = #2(S3 X Sl)
i-1 

#(#cD4). 
If then

If then either or

Proof. Cases (b) and (c) are direct consequences of Proposition 5, parts (b)
and (a) respectively.

Let us now examine case (a).
Since Q(BM4) = 0, each connected component of âM4 is PL-homeomorphic
to S3 and M4 - M#(#cD4) obviously holds; moreover, [FG2; Prop. 1]
ensures that Q(M) == g(M4) = 2.

Now, let (h, y) be a crystallization of M4 and - a permutation of A4 so
that g(M4) = 2 = Q. Note that, if Be =1= 0, relation (4’) and Proposition 3

I~I I~I I~I

give g(aM4) = g(g(Yn1#Yn2# ... #Ync)) = aQ # 0, against the hypothesis;
thus, 8,o = 0 holds.

Moreover, as far as the crystallization (0F,0 y) of M is concerned, the
following two cases may arise (see [Cv2]):
. 0QI = 0 for all i E D4, and M = #2(S3 X S1);

I~I

. 0 Qi = 1 for all i E D4, and M = CP2.
Hence, since relation (5) gives 0 ei = Qi for each i E A4 , the following two

possibilities occur:
. Qi = 0 for all i E D4, and M4 = #2(S3xS1)#(#cD4);
. Qi = 1 for all i E D4, and M4 = CP2#(#cD4). 0

Proposition 6 completes the classification of PL 4-manifolds (with C &#x3E; 0

boundary components) up to regular genus two; in particular the only prime
(with respect to connected sum) 4-manifolds with genus g  2 result to be

I~I I~I 

S4, D4, S3 X S1, Y1, Y2 and cClP2 . The classification is shortly explained in
I~I 

Tables 1 - 2 - 3.
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Table 1.

Table 2.
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