@article{CTGDC_1989__30_1_3_0,
author = {Johnstone, Peter T.},
title = {A constructive {{\textquotedblleft}Closed} subgroup theorem{\textquotedblright} for localic groups and groupoids},
journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
pages = {3--23},
year = {1989},
publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
volume = {30},
number = {1},
mrnumber = {1000828},
zbl = {0668.03028},
language = {en},
url = {https://www.numdam.org/item/CTGDC_1989__30_1_3_0/}
}
TY - JOUR AU - Johnstone, Peter T. TI - A constructive “Closed subgroup theorem” for localic groups and groupoids JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1989 SP - 3 EP - 23 VL - 30 IS - 1 PB - Dunod éditeur, publié avec le concours du CNRS UR - https://www.numdam.org/item/CTGDC_1989__30_1_3_0/ LA - en ID - CTGDC_1989__30_1_3_0 ER -
%0 Journal Article %A Johnstone, Peter T. %T A constructive “Closed subgroup theorem” for localic groups and groupoids %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1989 %P 3-23 %V 30 %N 1 %I Dunod éditeur, publié avec le concours du CNRS %U https://www.numdam.org/item/CTGDC_1989__30_1_3_0/ %G en %F CTGDC_1989__30_1_3_0
Johnstone, Peter T. A constructive “Closed subgroup theorem” for localic groups and groupoids. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 30 (1989) no. 1, pp. 3-23. https://www.numdam.org/item/CTGDC_1989__30_1_3_0/
1 , Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. | Zbl | MR
2 , , & , Remarks on localic groups, Lecture Notes in Math. 1348, Springer (1988), 154. | Zbl | MR
3 , Fibrewise Topology. Book in preparation.
4 , Stone spaces. Cambridge Studies in Advanced Math. n° 3, Cambridge Univ. Press 1983. | Zbl | MR
5 , The point of pointless topology, Bull. A. M. S. (N.S.) 8 (1983), 41-53. | Zbl | MR
6 , A simple proof that localic subgroups are closed, Cahiers Top. et Géom. Diff. Catég. XXIX (1988), 157-161. | Zbl | MR | Numdam
7 , A constructive theory of uniform locales, In preparation.
8 & , An extension of the Galois theory of Grothendieck, Mem. A.M.S. 309 (1984). | Zbl | MR
9 , A Godement Theorem for locales, Math. Proc. Camb. Philos. Soc. (to appear). | Zbl
10 , The classifying topos of a continuous groupoid, I. Trans. A.M.S. (to appear). | Zbl | MR
11 , The classifying topos of a continuous groupoid, II. (To appear). | Zbl | MR | Numdam
12 , Toposes and groupoids, Lecture Notes in Math.. 1348, Springer (1988), 280-298. | Zbl | MR





