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CONVENIENT VECTOR SPACES EMBED INTO THE CAHIERS TOPOS

by Anders KOCK

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFÉRENTIELLE
CATÉGORIQUES

Vol. XXVII-1 (1986)

RTSUME. Nous construisons un plongement plein de la cat6gorie
des applications lisses entre espaces vectoriels convenables (Fr6li-
cher - Kriegl) dans 1’un des topos connu comme un modele de la
G6om6trie Differentielle Synth6tique. L’etape essentielle consiste
6 6tendre les foncteurs "points proches" de Weil du cas de
dimension finie au cas convenable.

We construct a full embedding with good preservation properties
of the Frblicher-Kriegl category F (cf. [ 2, 3, 7, 9 ]) of "convenient"
vector spaces, with all smooth maps, into the fully well-adapted model
C for synthetic differential geometry considered by Dubuc in [ 1] , the
so-called Cahiers topos (cf. also [4]). Each convenient vector space
will, after the embedding, satisfy the vector form of the Axiom 1
(Kock-Lawvere axiom, cf. [4] ) for each Weil algebra W, and so the
rich calculus of smooth maps in F can be dealt with synthetically
in C.

The idea of the construction is this : to construct a site of
definition for the Cahiers topos, one utilizes that for each Weil al-

gebra W, the endofunctor -aW on the category of finite dimensional
vector spaces with linear maps extends to an endofunctor on the cat-

egory f of finite-dimensional vector spaces and smooth maps, a cons-
truction which goes back to Weil [10 ] ; the site is then the "semidirect

product" fKW of f and W (W being the category of Weil algebras).
We then prove that -aW can also be defined as an endofunctor on the

category F of convenient vector spaces and smooth maps. The semidirect
product F « W contains fjx W as well as _F, and the desired embedding
J : F -&#x3E; _C is then simply by "representing from the outside", i.e., util-
izing the hom functor of F « W.

1. SOME CALCULUS IN CONVENIENT VECTOR SPACES.

We recall some facts about these, from [2, 3, 7, 8] , cf. also [ 9]
and [5].

A convenient vector space is a vector space over R equipped
with a linear subspace X’ of the full algebraic dual X*, such that X’
separates points, and with the following two completeness propertied

1. The bornology induced on X by X’ is a complete bornology ;
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2. any linear X - R which is bounded with respect to this borno-

logy belongs to X’.

In the following X, Y, Z, etc. always denote convenient vector

spaces, X = (X, X’) etc. The vector space Rn carries a unique convenient
structure, namely the full linear dual.

We recall that a map c : ft2 -+ X is called smooth (or a smooth

plot on X) if for any cp E X’, cp o c : Rn -&#x3E; R is smooth (= C°° ). And a

map f : X -&#x3E; Y is called smooth, if f o c is smooth for any smooth

plot c on X.
The smooth linear maps X - R turn out to be exactly the elements

o f X’.

A main motivation for the notion of convenient vector space
is that the vector space Co’ (X, Y) of smooth maps from X to Y itself
carries a canonical convenient structure, making the category of
convenient vector spaces and their smooth maps into a cartesian closed

category.

A map f : X -&#x3E; Y is said to have order &#x3E; k if there exists a

smooth f* : XxR -&#x3E; Y with

In [5J (Theorem 2.13), we prove that f is of order ’ k iff for any
x E X and cp E Y’, the map 

’

is of order ? k .
A map f : X - Y is homogeneous of degree i if

and polynomial of degree  k if it can be written as a sum

with fi homogeneous of degree i . Since Y’ separates points, a map
f : X+ Y is homogeneous (resp. polynomial) with given degree iff for
all TEY’, cp o f has the corresponding property.

One has the following results :

Theorem 1.1. Any smooth g : X -&#x3E; Y can uniquely be written as a sum

of a polynomial map of degree  k, and a map of order &#x3E; k.
In particular, g is of order &#x3E; 1 iff g(0) = 0.

In the light of the above mentioned equivalence of the two def-
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initions of order, this is Corollary 1.3 of [ 5] .
The polynomial map in the theorem should be viewed as an ap-

proximating Taylor polynomial.

Theorem 1.2. Any smooth i-homogeneous map h : X -&#x3E; Y is of form

for some unique symmetric i-linear map H : &#x3E;C1 -&#x3E; Y.

This is Corollary 1.4 in [ 51 -

Theorem 1.3. L et f : W - X be smooth. L et k &#x3E; 0 be an integer. There
exist smooth functions g : Rr- X and elements xa E X such that,
for all t E R ,

(with standard conventions about multi-indices a ). The x ’s are unique-
ly determined. 

"

Except for the uniqueness assertion, this follows immediately
from [5J, Theorem 2.12. The uniqueness of the xa ’s follows easily
from the corresponding result for the case X = R using that X’ sep-
arates points.

The Xrv ’s in Theorem 1.3 are of course the "Taylor coefficients"

however, they do not appear explicitely in the present article.

For any smooth f : X + Y and x E X, the map

can, by Theorems 1.1 and 1.2, be written as a sum of a smooth linear

map dfx and a map or order &#x3E; 2. The map

is smooth, and linear in the second variable, cf. e.g. [3]. Thus, it
defines a map

where L(X, Y) is the vector space of smooth linear maps X - Y. There
is a canonical structure of convenient vector space on L(X, Y) making
all the , evaluation maps L(X, Y)+ Y smooth and such that D f is
smooth.
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2. JET CALCULUS AND WEIL PROLONGATIONS.

Let I C C (X)(R n) be an ideal. For any convenient vector space X,
we let I(X) be the set of those smooth f : ft2 -+ X such that for all

(p E X’, cp 0 f E I. We say that

This is an equivalence relation. An equivalence class is called a

mod I jet into X. This notion will be proved to have good properties
if I is large enough : Let M C C" (R9 ) denote the (maximal) ideal of
functions

i.e., functions of order &#x3E; 1. Then Mr is the ideal of functions of order
&#x3E; r. It is of finite codimension. We shall say that an ideal I C C°° (Rn )
is a Weil ideal if, for some r, Mr C I C M. The residue ring C°° (ft1 )/I
is then a Weil algebra (cf. e.g. [4J or [I] for the notion), and any
Weil algebra comes about in this way. We shall use the letter W to
denote any Weil algebra, but with a given presentation by a Weil ideal

I, and use "mod-1-jet" and "W-jet" synonymously.
We denote by Draw or W X the set of all W-jets into X. Since

M r C I, we may choose a finite set of polynomials

oo 
zof degree  r which form a basis in C (Rn) mod I. It then follows

from Theorem 1.3 that any W-jet into X has a representative of the
form

for unique xi E X, and thus X@W = Xm . This also justifies the ism nota-

tion, since W = Rm . Likewise, if f : X - Y is linear, f rAW : XmW -+ YEW
may of course be defined. Our aim is to define f aW for any smooth
f : X+ Y.

Proposition 2.1. If fl == f 2 mod I (where fi : R9 + X ), then we

have g o f = g o f2 mod I ’ for any smooth g : X -* Y.

Proof. We have fl (0) = f 2(0) (= xo , say) since f 1 :: f2 mod M. Since

it suffices to prove the result in the case

So f i and f 2 may both be assumed to have order &#x3E; 1.
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To prove g o f 1 = g o f 2 mod I means by definition to prove

for any smooth linear cp : Y -&#x3E; R, so let such cp be given. Change nota-
tion and write g for cp o g . Then g: X+ R may by Theorem 1.1 be
written as a sum

with hq : X - R smooth homogeneous of degree q, and G of order &#x3E; r .

It suffices to prove that ,

and that

For (2.2), this is trivial ; in fact each G o fi (I = 1, 2) has itself
order &#x3E;r since

So

For (2.1), we write, by Theorem 1.2 hg in the form

where H : Xq’ -&#x3E; R is smooth q -linear. For simplicity, let q = 2. Then

and the result follows from

Lemma. Let H : Xq -&#x3E; R be q-linear smooth, and let 1 z NF be an

ideal in C CXXRI1). If k : R’ - X belongs to I(X) then, for any smooth

i i: Rn -&#x3E; X ( i = 2 , ..., q),

Proof. Again, let q = 2 and write
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with L(t) or order &#x3E; r . Then the function off displayed in (2.3) can
be written

The last term here clearly is a function of order &#x3E; r , since L is, and
so is in 1. But also each H( kCt), xa) e I since they are of form cp o k ,
cp E X’ (namely with cp = H(-, xa)), so is in I since k E I(X). The Lemma,
and thus the proposition, is proved. 0

For g : X+ Y smooth there is thus an evident way of defining
g @ W : Yaw + YaW so as to make - @W a functor, namely composing
with g. If j E X@W is a W-jet represented by f : Rn -&#x3E; X, we let

(g @ W)( j ) be the W-jet represented by go f : Rn-+ Y. If g is smooth

linear, g aW will then be the usual map with this notation.

Our next task is to make - aW into a functor which r’so takes
values in F. Since X @ W = X m, XsW inherits a structure of convenient
vector space from that of Xm . The isomorphism X@W = Xm depends
on a choice of basis mod I, but any other choice will define an invert-
ible real mxm matrix, which then defines also a smooth linear isomor-

phism Xm -&#x3E; Xm, so the convenient vector space structure on X@W is
well defined.

Proposition 2.2. For g : X - Y smooth, the map g rAW : X@W -&#x3E; Y@W is
smooth. 

Proof. We first do the special case where I = M’ C C°°(Rn ). As basis
mod I, we may choose all monomials in t i , ..., tn of degree  r .

The statement is then just the fact that, for g fixed, the r degree
partial derivatives 8aCg 0 f )/8 taco) depend in a smooth (in fact polynom-
ial) way on the partial derivatives d a f / a t a (0) ("higher order chain

rule"). Since I could not find a reference*,not even an exact statement,
of this "evident" fact, I shall be more explicit. Write g in the form

with hq : X -&#x3E; Y smooth homogeneous of degree q and G of order &#x3E; r .
It suffices to prove the result for each hq separately, and for G. Now,
since a jet is represented by a function f : R -&#x3E; X or order &#x3E; 1,
G o f has order &#x3E; r , so its partial derivatives of order r vanish, so

depend smoothly on those of f. Now consider hq . Write hq (x)= H(x,..., x)
where H : Xq -&#x3E; Y is smooth symmetric q--linear (Theorem 1.2). Since
the partial derivatives of any k : Rn -&#x3E; Z can be obtained from the

Dqk ’s, by evaluation at the canonical basis vectors in Rn, the result

*AD8E.D I N PROOF. I thank the referee for providing the following two references :

A. Bastiani, Applications diff6rentiables et vari6t6s diff6rentiables de dimension

infinie, J. Analyse Math. J6rusalem XIII (1964), 2-113 ; and P. Ver Eecke, Fonde-

ments du Calcul Différentiel, P.U.F., Paris 1984.
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can be obtained from the following Lemma (when writing Rn for X,
X for Y and Y for Z).

Lemma 2.3. Let H : Yq -&#x3E; Z be symmetric smooth q-linear. Then there

is a fixed formula

valid for all smooth f : X -&#x3E; Y.

Proof and more precise statement. Let

Then Dpk (x ; x1, ..., xp ) equals the following finite sum (2.4),
whose index set is the set of partitionings of p ={ 1, 2, ..., p} into

 q disjoint subsets rr (1), ..., rr (s (rr)) 

and if B C p is a subset, with b elements h ..., ib , then we have put

This formula is easily verified by induction, and the Lemma is proved.

Now let I O M r be a general Weil ideal. Choosing a basis hI , ...g fro
mod I amounts to an R-linear splitting a of the projection

It induces a smooth linear splitting X@O- of

By the well-definedness result (Proposition 2.1), for g : X -&#x3E; Y smooth,
g aW equals the composite

where the middle map is smooth by the special case already proved.
Thus, the composite is smooth.

This proves the Proposition. Thus each Weil algebra W defines
an endofunctor - @W : F -&#x3E; F.



10

3. TRANSITIVITY OF PROLONGATIONS.

For any vector space X and Weil algebras Wi , W2 we have of
course 

naturally in X with respect to linear maps. Our aim in this section is
to prove that for convenient vector spaces X, this isomorphism is
natural in X with respect to smooth maps.

Recall that we may consider as a subring

Let I C C°°(R9) be a Weil ideal representing the Weil algebra W. In
the following commutative diagram with exact rows, r is defined as
intersection (pullback) :

Since there is a basis mod I consisting of polynomials, it follows that

thus from the Noether isomorphism

it follows that cx is an isomorphism. More generally, if X is a conv-

enient vector space, the subspace of C°° (Rn, X) consisting of smooth

polynomial functions may be identified with XraR[ti, ..., tn] (Theorem
1.3). So if we denote by I(X) the subspace of functions Rn -&#x3E; X which
are E 0 mod I, and I’(X) the polynomial functions among them, we
have a commutative diagram with exact rows and with the left hand

square a pullback :

Henceforth, we shall write I instead of I(X) when the context (diagram)
will inform us about X.

For the proof of naturality of (3.1) with respect to smooth maps,
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we shall make essential use of the cartesian closedness of the category
F of convenient vector spaces with smooth maps : for X, Y convenient
vector spaces, the vector space C CX, Y) of smooth maps X -&#x3E; Y

carries a natural structure of convenient vector space making it the

exponential object Y in F. In particular

natural in X E F, and this will be the essence in the proof. Let Wi,
W2 be Weil algebras with presentation C°° (Rn)/I and C°°(Rm)/I2,
respectively. Then W1 @ W2 has presentation C°°(Rn+m)/(I1, 12), where

(Il, 12) is the ideal generated by functions h(s).g(s, t) with h E I1 and
functions h(s, t).g(t) with g E 12 (where s = (sl , ...,sn) etc.). Consider

the following commutative diagram (in which the two bottom corners

represent the two sides of (3.1)) :

Here ax and a 181 X are evident, whereas 6x utilizes (3.2) and baX util-
izes a mimicking of (3.2) on the level of polynomials, namely the linear
isomorphism

axand 8x are surjective. The top isomorphism comes about purely alge-
braically by applying - @X to isomorphisms, well-known from algebra,

The maps aX and BX are evidently natural in X with respect to smooth

maps ; for the maps a I8tX and b I8tX such naturality does not make

sense, since R[s , t ] @X is not functorial in X with respect to smooth
maps. However, this does not matter ; the smooth natural isomorphism
of the two bottom corners in (3.3) now follows from a piece of

diagram chasing, namely the following Lemma whose proof we leave
to the reader.

Lemma. Let C, D and E be functors A- B, and assume for each X E A
a commutative triangle 

If all aX are epic, and a and 6 are natural in X, then so is y .
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We have thus proved the first statement in the following theorem
(the second assertion being trivial) :

Theorem 3.1. The isomorphism (3.1) is natural with respect to smooth

maps. Also X 8 R = X, naturally with respect to smooth maps.

We end this section by remarking that the construction XaW is

also functorial in W. A homomorphism F of Weil algebras

can be represented by a smooth map

and with (p c F E J whenever (p E I. Then, for f : R -&#x3E; R representing
an element M of W 1, f o F represents F({f}) E W2. And if f : Rn -&#x3E; X
represents an element of Xawi, f o F represents (X@F)({f}).

All said, a defines a bifunctor

where W is the category of Weil algebras. In fact, by Theorem 3.1,
the monoidal category (W, @, R) acts on F in an associative unitary
way (up to coherent isomorphisms). - Note that o is the coproduct
in W, R the initial object. (Actually, R is also terminal object in W.)

4. SEMIDIRECT PRODUCT OF CATEGORIES.

Let W be any category with finite coproducts, denoted is, and
with initial object denoted R, and let G be a category on which

W acts (from the right, say), i.e., there is given a functor cog : GxW -&#x3E; G,
and there are given natural isomorphisms (for X e G, Wi E W) : ·

which fit coherently with the associativity - and unit - isomorphisms
of the monoidal category (W, a, R).

We construct a new category G rxW as follows : the objects are
pairs (X, W) with X E G, W E W. An arrow (Xi, W1) -&#x3E; (X2, W 2) is a pair
of arrows in G and W, 

and the composite of this pair with
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is the pair (associativity isomorphisms omitted, by coherence) :

Identity arrow is

There is a full embedding j : G - G xW given by X |-&#x3E; (X, R) and

Proposition 4.1. The inclusion j : G -&#x3E; GxW preserves all those inverse
limits which are preserved by all - @W.

Proof. We prove the case of binary products only (which is all we need
for what follows). We have in fact more generally

due to the string of conversions

Proposition 4.2. If G has ex qonential objects YX which are preserved
by each - fAW in the sense Y aW = (Y@W)-X and if each -aW preserves
finite products, then j preserves exponential objects.
Proof. We have bijective correspondences

where we for the last conversion utilized (4.2), which we may by
the second assumption made.
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If the initial object R of W is also terminal, we have a canonical
functor TI : G x W -&#x3E; G, given on objects by rr(X, W) = X and with
Tr applied to the arrow (4.1) given as

Clearly 1T 0 j = id G , and there is a natural map making j (1T(X, W)) a
retract of (X, W). (In fact, if each -aW preserves finite products,
it follows from (4.2) that

and (1, W) is an object in G KR which has a unique point (= map from
the terminal object).) 

5. THE EMBEDDING.

We consider now the category F, with the "action" cog of W, the
category of Weil algebras, as described in §2 and §3, and we form
F xW. The full subcategory f C F of finite dimensional vector spaces
is stable under the action, so that we get fxW as a full subcategory
of F xW. 

We describe (essentially following [1]) a Grothendieck topology on
focW which will make it a site of definition for the Cahiers topos
T-lTWe declare the following families to be covering :

if n(ai): Xi -&#x3E; X form an open covering.
Let i and j denote the following full inclusions

Any Y E F defines a functor J(Y) : (fxW)op -&#x3E; Sets, namely

So J(Y) is "representable from the outside". We may omit i and j
from notation.

Proposition 5.1. J(Y) is a sheaf.

Proof. Let f ail be a covering, as in (5.1), in fxW, and let

be a compatible family (Y E F). We should construct a map
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The data of the bi ’s amount to bi : X - YaW and the compatibility
condition for the bi ’s implies one for the Ei’s. The required map c
amounts to a map c : X - Y8W. Also n (ai) : Xi - X form an open
covering. So the crux is to observe that any convenient vector space
Z (in our case Z = YaW) represents (from the outside) a sheaf on

the site f (with open coverings as its topology). This follows from con-
creteness of the categories f and F, and the fact that smoothness of
a set theoretic map X -&#x3E; Y between convenient vector spaces may be
tested by smooth plots on an open covering of X and with finite dim-
ensional domains.

We leave the full details to the reader. At this point, it would
have been an advantage to consider the categories f and F consisting
of open subsets of finite dimensional, resp. convenient vector spaces,
with W acting on them (which it does by the same construction as
the one of §2.3) because the open coverings in f and F admit

pullbacks which are furthermore preserved by -aW. 

We can now state our main theorem ; C denotes the Cahiers

topos (= sheaves on fxW) : 

Theorem 5.2. The functor J : F -&#x3E; C is full and faithful. It preserves
f1nite products, and it preserves exponentials Y X provided X is finite
dimensional.

Remark. By the remarks just before the statement of the theorem it
follows that the embedding J may be extended to the category F
of open subsets of convenient vector spaces, and their smooth maps,
and thus possibly also to some category of "manifolds modelled on
convenient vector spaces".

Proof. When J is composed with the global-sections functor r :
C -&#x3E; Sets, we get the faithful underlying-set functor I. I : F + Sets, so J
is faithful. To test fulness, let f: J(X) -&#x3E; J(Y) be a map in C. We get
a set theoretic map | 1ft: X -&#x3E; Y, which we have to test is smooth. But

again, smoothness may be tested by checking with smooth plots c: Rn -&#x3E; X
(in fact n - l suffices), and since

smoothness of |f| follows. To see J( I f 1) = f, just apply the faithful |.|. ·
Next we argue that J preserves finite products. It is clear from

the construction that -aW : F -&#x3E; F preserves finite products for each
W E W. Hence, by Proposition 4.1, j : F + FxW preserves finite products,
and hence so does J, for standard categorical reasons (essentially,
"Yoneda embedding preserves limits").

Finally, to argue for exponentials, we note that the functors
-aW : F -&#x3E; F satisfy
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In fact, if W is m -dimensional as a vector space, both sides are iso-

morphic, by smooth linear isomorphisms, to

This isomorphism is in fact natural with respect to smooth maps, be-
cause if h 1 , ..., hm E C°° (Rn) is a basis mod I, an element of yXsW has
a unique representative of form

and under the isomorphism, this element goes to

the square bracket here representing an element of YaW. The passage
thus described is clearly natural. So -aW satisfies the conditions of

Proposition 4.2, so that j : F+ FKW preserves exponentiation. The

rest_of the argument is now purely categorical ; let A E f x W, and
let A be the object of C which it represents. For X E f and Y e F,
we then have 

the last equality provided Axj (X) E f"p(W, which will be the case since
X E f . The theorem is proved. 

6. RETROSPECT.

Having Theorem 5.2, as well as the full power of synthetic rea-
soning in C, many of the constructions and comparisons that we

worked hard to get, become very transparent. For a Weil algebra W,
let W denote the ("infinitesimal") object in C which it represents.
Then FxW becomes the full subcategory of C of objects of form

J(X)xW (X E F, W E W), this being identified with (X, W) E FxW. A
W-jet into X becomes simply a map W -&#x3E; J(X), explaining the functor-

iality of the jet notion. Also, X@W goes by J to J(X)W, explaining
the properties of the functor -@W, e.g. the transitivity

is simply the categorical law (Af3)C- A BxC.
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Let us finally remark that each J(X) evidently will be an R-module

object (R = J(R)), and that it will satisfy the "vector form of Axiom
1 " (cf. [4]), in the sense that, if rn is the linear dimension of W,
we have an isomorphism J(X) m-&#x3E; J(X)w constructed out of a linear
basis hi , ..., hm for R[t 1, ..., tn] mod I (where W = R[t]/I) as the map
with synthetic description 

(W being identified with a sub"set" of Rn, namely the "zero-set of I ").
This follows essentially from the fact that in F we have an isomorphism
xm - X@W given by the same formula (6.1). 

From the validity of Axiom lw for J(X) it follows, in turn, that
J(X) is infinitesimally linear in the strong (Bergeron-) sense, cf. [ 6] ;
the argument is as in [6], Proposition 1.2, with R replaced by J(X).
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