Combinatoire
A shadow Markov equation
Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1483-1489

We introduce an analogue of the classical Markov equation that involves dual numbers a+αε with ε 2 =0. This equation characterizes the “shadow Markov numbers” recently considered by one of us. We show that this equation is characterized by invariance by cluster algebra mutations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.496

Bonin, Nathan 1 ; Ovsienko, Valentin 1

1 Laboratoire de Mathématiques de Reims, UMR9008 CNRS, Université de Reims Champagne-Ardenne, U.F.R. Sciences Exactes et Naturelles, Moulin de la Housse - BP 1039, 51687 Reims cedex 2, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G9_1483_0,
     author = {Bonin, Nathan and Ovsienko, Valentin},
     title = {A shadow {Markov} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1483--1489},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G9},
     doi = {10.5802/crmath.496},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.496/}
}
TY  - JOUR
AU  - Bonin, Nathan
AU  - Ovsienko, Valentin
TI  - A shadow Markov equation
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1483
EP  - 1489
VL  - 361
IS  - G9
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.496/
DO  - 10.5802/crmath.496
LA  - en
ID  - CRMATH_2023__361_G9_1483_0
ER  - 
%0 Journal Article
%A Bonin, Nathan
%A Ovsienko, Valentin
%T A shadow Markov equation
%J Comptes Rendus. Mathématique
%D 2023
%P 1483-1489
%V 361
%N G9
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.496/
%R 10.5802/crmath.496
%G en
%F CRMATH_2023__361_G9_1483_0
Bonin, Nathan; Ovsienko, Valentin. A shadow Markov equation. Comptes Rendus. Mathématique, Tome 361 (2023) no. G9, pp. 1483-1489. doi: 10.5802/crmath.496

[1] Conley, Charles H.; Ovsienko, Valentin Shadows of rationals and irrationals: supersymmetric continued fractions and the super modular group (2022) | arXiv

[2] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | Zbl | DOI | MR

[3] Fomin, Sergey; Zelevinsky, Andrei The Laurent phenomenon, Adv. Appl. Math., Volume 28 (2002) no. 2, pp. 119-144 | DOI | MR | Zbl

[4] Hone, Andrew N. W. Casting light on shadow Somos sequences (2021) | arXiv

[5] Huang, Yi; Penner, Robert C.; Zeitlin, Anton M. Super McShane identity (2019) (to appear in J. Differ. Geom.) | arXiv

[6] Markov, Andreĭ Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879), pp. 381-406

[7] Musiker, Gregg; Ovenhouse, Nicholas; Zhang, Sylvester W. Double Dimer Covers on Snake Graphs from Super Cluster Expansions (2021) | arXiv

[8] Ovsienko, Valentin Shadow sequences of integers, from Fibonacci to Markov and back (2021) (to appear in Math. Intell.) | arXiv

[9] Ovsienko, Valentin; Shapiro, Michael Cluster algebras with Grassmann variables, Electron. Res. Announc. Math. Sci., Volume 26 (2019), pp. 1-15 | MR | Zbl

[10] Ovsienko, Valentin; Tabachnikov, Serge Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, Algebr. Represent. Theory, Volume 21 (2018) no. 5, pp. 1119-1132 | DOI | MR | Zbl

[11] Propp, James The combinatorics of frieze patterns and Markoff numbers, Integers, Volume 20 (2020), A12, 38 pages | MR | Zbl

[12] Rabin, Jeffrey M. Super elliptic curves, J. Geom. Phys., Volume 15 (1995) no. 3, pp. 252-280 | DOI | MR | Zbl

[13] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, 2010 (http://oeis.org)

[14] Veselov, Alexander Conway’s light on the shadow of Mordell (2022) | arXiv

Cité par Sources :