Géométrie algébrique, Géométrie et Topologie
Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
Comptes Rendus. Mathématique, Tome 361 (2023) no. G8, pp. 1249-1266

We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part the question concerning the motivic nearby cycles of restriction functions in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.492
Classification : 14B05, 14B07, 14J17, 32S05, 32S30, 32S55
Keywords: arc spaces, contact loci, motivic zeta function, motivic Milnor fiber, motivic nearby cycles, Newton polyhedron, nondegeneracy, sheaf cohomology with compact support

Lê, Quy Thuong 1, 2 ; Nguyen, Tat Thang 3

1 University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
2 Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
3 Institute of Mathematics, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G8_1249_0,
     author = {L\^e, Quy Thuong and Nguyen, Tat Thang},
     title = {Geometry of nondegenerate polynomials: {Motivic} nearby cycles and {Cohomology} of contact loci},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1249--1266},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G8},
     doi = {10.5802/crmath.492},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.492/}
}
TY  - JOUR
AU  - Lê, Quy Thuong
AU  - Nguyen, Tat Thang
TI  - Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1249
EP  - 1266
VL  - 361
IS  - G8
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.492/
DO  - 10.5802/crmath.492
LA  - en
ID  - CRMATH_2023__361_G8_1249_0
ER  - 
%0 Journal Article
%A Lê, Quy Thuong
%A Nguyen, Tat Thang
%T Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
%J Comptes Rendus. Mathématique
%D 2023
%P 1249-1266
%V 361
%N G8
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.492/
%R 10.5802/crmath.492
%G en
%F CRMATH_2023__361_G8_1249_0
Lê, Quy Thuong; Nguyen, Tat Thang. Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci. Comptes Rendus. Mathématique, Tome 361 (2023) no. G8, pp. 1249-1266. doi: 10.5802/crmath.492

[1] Artal Bartolo, Enrique; Cassou-Noguès, Pierrette; Luengo, Ignacio; Melle Hernández, Alejandro Quasi-ordinary power series and their zeta functions, Memoirs of the American Mathematical Society, 84, American Mathematical Society, 2005, vi+85 pages | Zbl

[2] Budur, Nero; Fernández de Bobadilla, Javier; Lê, Quy Thuong; Nguyen, Hong Duc Cohomology of contact loci, J. Differ. Geom., Volume 120 (2022) no. 3, pp. 389-409 | MR | Zbl

[3] Bultot, Emmanuel; Nicaise, Johannes Computing motivic zeta functions on log smooth models, Math. Z., Volume 295 (2020) no. 1-2, pp. 427-462 | DOI | MR | Zbl

[4] Denef, Jan; Hoornaert, Kathleen Newton polyhedra and Igusa’s local zeta function, J. Number Theory, Volume 89 (2001) no. 1, pp. 31-64 | DOI | MR | Zbl

[5] Denef, Jan; Loeser, François Motivic Igusa zeta functions, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl

[6] Guibert, Gil Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv., Volume 77 (2002) no. 4, pp. 783-820 | Zbl | MR | DOI

[7] Guibert, Gil; Loeser, François; Merle, Michel Nearby cycles and composition with a nondegenerate polynomial, Int. Math. Res. Not., Volume 2005 (2005) no. 31, pp. 1873-1888 | DOI | MR | Zbl

[8] Guibert, Gil; Loeser, François; Merle, Michel Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006) no. 3, pp. 409-457 | MR | Zbl

[9] Lê Dũng Tráng La monodromie n’a pas de points fixes, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975) no. 3, pp. 409-427 | MR | Zbl

[10] Lê Dũng Tráng Some remarks on relative monodromy, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff International Publishers, 1977, pp. 397-403 | Zbl

[11] McLean, Mark Floer cohomology, multiplicity, and the log canonical threshold, Geom. Topol., Volume 23 (2019) no. 2, pp. 957-1056 | DOI | Zbl | MR

[12] Nicaise, Johannes; Payne, Sam A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory, Duke Math. J., Volume 168 (2019) no. 10, pp. 1843-1886 | MR | Zbl

[13] Raibaut, Michel Singularités à l’infini et intégration motivique, Bull. Soc. Math. Fr., Volume 140 (2012) no. 1, pp. 51-100 | DOI | MR | Numdam | Zbl

[14] Steenbrink, Joseph H. M. Motivic Milnor fibre for nondegenerate function germs on toric singularities, Bridging algebra, geometry, and topology (Springer Proceedings in Mathematics & Statistics), Volume 96, Springer, 2014, pp. 255-267 | MR | Zbl

Cité par Sources :