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1. Introduction

Let Ω ⊂ Rn be an open, bounded domain and let (X,ρ) be a σ-convex, τ-smooth Banach space.
Consider u : Ω→X and let F be a norm on X⊗Rn . We study solutions of the problem∫

Ω

〈
F (∇u)γ−1DF (∇u),∇ϕ〉

X⊗Rn =
∫
Ω
〈 f ,ϕ〉X ∀ϕ ∈ W1,γ

0 (Ω;X), (FγL)

for sufficiently regular f . Here DF denotes the derivative of the map F : X⊗Rn → R. We refer
to (FγL) as the Banach-space valued Finsler γ-Laplacian. We refer the reader to Section 2 for
precise definitions and notation.

Given a norm ρ on Rn the (scalar) Finsler Laplacian∫
Ω

〈
ρ(∇u)Dρ(∇u),∇ϕ〉= 0 ∀ϕ ∈ W1,2

0 (Ω;R) (1)

is closely related to the anisotropic isoperimetric inequality, [4]. Under additional 2nd order
ellipticity conditions, the Finsler Laplacian has also been used to study bubbling phenomena
for volume constrained minimizers [16]. Some qualitative regularity for the Finsler Laplacian was
first shown in [19], where no quantitative regularity or convexity of ρ was assumed.

Recently, extending results of [4], the Finsler γ-Laplacian∫ 〈
ρ(∇u)γ−1Dρ(∇u),∇ϕ〉= 0 ∀ϕ ∈ W1,γ

0 (Ω;R) (2)

has been studied in [18, 25, 28, 31] with a focus on spectral properties, due to applications to the
isoperimetric inequality and Finslerian analogs of other classical inequalities in Riemannian geo-
metric analysis. Concerning the regularity theory of solutions to (2), in the scalar Euclidean set-up
standard theory applies, see [21, Chapter 7], and in particular Hölder regularity of solutions can
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be recovered via Harnack’s inequality and maximum principles, see also [19] and [22] for further
comments in this direction.

In order to relate well-studied (quantified) geometric properties of Banach spaces to regularity
of solutions of the Finsler γ-Laplacian, we make use of duality methods and notation taken
from Banach space geometry, see [32]. In particular, given a σ-convex and τ-smooth Banach
space (Y,F ), we make use of the duality mappings jγF (ξ) := F (ξ)γ−1DF (ξ). Here we only mention
that jγF (∇u) coincides with the stress functional, which is of recent interest in the calculus of
variations. For the readers convenience, we include background for these tools in Section 2.1.

Duality techniques in the context of the calculus of variations already appear in [33] and were
used in the context of integrands with linear growth in [30]. More recently, such ideas have been
employed in the context of linear growth [26], standard growth [10–12], faster than exponential
growth [6, 7], and (p, q)-growth [20]. To facilitate a clear analysis of how our results relate to the
literature on quasi-linear elliptic PDEs, we state our main result precisely.

Theorem 1. Fix 1 < γ<∞,τ ∈ (1,2], andσ ∈ [2,∞). Let (X,ρ) be a Banach space,Ω⊂Rn a domain,
and F a σ-convex and τ-smooth norm on X⊗Rn satisfying for some norm ∥ ·∥ on Rn

F (ξ1, . . . ,ξn)≲ ∥(ρ(ξ1), . . .ρ(ξn)∥.

Set α = max(min(γ′,σ′),min(γ,τ)), and α∗ = α−1. Assume f ∈ Bα∗,γ′
∞ (Ω). Suppose u ∈ W1,γ(Ω;X)

solves (FγL). If

V (∇u) := F (∇u)
γ−σ
σ ∇u, and V ∗(

jγF (∇u)
)

:= F∗
(

jγF (∇u)
) γ′−τ′

τ′ jγF (∇u)

respectively, denote the V - and dual V -functions for ∇u, then

V (∇u) ∈ B
α
σ ,σ

∞,loc(Ω) and V ∗( jγF (∇u)) ∈ B
α
τ′ ,τ′

∞,loc(Ω). (3)

In fact, for any Br ⋐Bs ⋐Ω,

∥V (∇u)∥σ
B
α
σ ,σ
∞ (Br )

+∥V∗( jγF (∇u)∥τ′
B
α
τ′ ,τ′
∞ (Br )

≲(s−r ) ∥u∥γ
W1,γ(Bs )

+∥ f ∥γ′
B
α∗ ,γ′
∞ (Bs )

.

Moreover,

∇u ∈ B
α

max{σ,γ} ,γ

∞,loc (Ω) and jγF (∇u) ∈ B
α

max{τ′ ,γ′} ,γ′

∞,loc (Ω). (4)

A wealth of examples of functionals F satisfying the assumptions of Theorem 1 can be con-
structed as follows.

Example 2. When (X,ρ) is a σ-convex and τ-smooth Banach space, we can identify X⊗Rn with
the space of “matrices” with n columns, where each column is an elements inX after some choice
of basis. This is analogous to how Rm ⊗Rn is often identified with the space of m ×n matrices.
Then, define F :X⊗Rn →R by setting for 1 < p <∞,

F (x1, . . . , xn) = ∥(ρ(x1), . . . ,ρ(xn))∥ℓp (Rn ) ∀ xi ∈X (5)

Then (X⊗Rn ,F ) is min(p,τ)-smooth and max(p,σ)-convex. We prove this fact in Proposition 12
and give examples of σ-convex and τ-smooth Banach spaces in Example 8.

The V - and dual V -functions, denoted by V , V ∗ in Theorem 1 are specific choices from the
family of V functions associated to a Banach space (Y,F ) and its dual (Y∗,F∗), defined by

Vp,q (ξ) = F (ξ)
p−q

q ξ and V ∗
p,q (ξ∗) = F∗(ξ∗)

p−q
q ξ∗. (6)

We choose to study (FγL) in a general σ-smooth and τ-convex Banach space (X,ρ). This poses
essentially no additional difficulty compared to working over Rm , but enables the application of
our theorem to interesting Banach spaces. The main additional difficulty is to reprove a technical
estimate concerning the V -functional in this setting. Since this result may be of independent
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interest in the study of Banach-space valued problems in the calculus of variations, we state it
here.

Lemma 3. Let (Y,F ) be a Banach space. Then, for any p, q > 0,

F
(
Vp,q (ξ)−Vp,q (η)

)∼ (
F (ξ)+F (η)

) p−q
q F (ξ−η).

The implicit constants depend only on p−q
q .

While Lemma 3 is well known when F is the Euclidean norm on Rn , our proof is elementary
and offers insight even in this case.

Our method of proving Theorem 1 follows difference quotient arguments well-known in the
study of solutions to elliptic systems with p-growth or even so-called non-standard growth,
see [21] for an introduction. The main difficulty is the lack of ellipticity inherent in the Finsler
γ-Laplacian. The Euclidean-norm is 2-smooth and 2-convex. Weakening these assumptions to
τ-smoothness and σ-convexity fundamentally changes the ellipticity. In particular very degen-
erate elliptic behavior is possible (see Example 4). This also changes the precise form of growth
bounds of the system (FγL). σ-convexity and τ-smoothness have been studied since at least [14].
Nonetheless, a direct relationship between the regularity of solutions to any Finsler γ-Laplacian
and the basic quantified geometric properties of the Finslerian norm have not previously been
exploited. By using the so-called characteristic inequalities of [32], we are able to transfer differ-
ence quotient techniques to this setting.

We emphasize that we deal with a broad class of problems and do not impose structure
conditions beyond σ-convexity and τ-smoothness, and a natural condition that ensures the
norm F on the space of gradients X⊗Rn behaves well relative to the norm ρ on the space of
partial derivativesX. Our results also suggest new critical thresholds concerning the regularity of
solutions. These thresholds depend on the relationship between the smoothness and convexity
of F as well as the homogeneity γ of the equation. We give two examples to demonstrate the type
of problems we are able to deal with and to contrast our results with the existing literature.

Example 4. The elliptic behavior of (FγL) can be badly behaved, even in relatively simple cases,
when X = R and γ = 2. Consider ρ = ∥ · ∥ℓp for some p > 2. Then, the Finsler Laplacian takes the
strong form,

−div
(
D|∇u(x)∥ ·∥2

ℓp

)=−div(A(x)∇u(x)) = 0,

where
(A(x))i

j = ∥∇u(x)∥2−p
ℓp |∂i u(x)|p−2δi

j .

Thus when ∇u(x0) = λei for some standard basis direction, it follows A(x0) has precisely 1-
nonzero entry, no matter the size of |λ| = |∇u(x0)|. Consequently, (2) falls outside the realm of
PDEs studied in [8] and [15], where elliptic operators with degeneracies in a convex set were
studied.

Example 5. If M is a rotation matrix, the Finsler p-Laplacian with norm ρ( · ) = ∥M · ∥ℓp takes
weak form ∑

i

∫
|(M∇u)i |p−2(M∇u)i (M∇ϕ)i = 0. (7)

When M is the identity matrix (7) reduces to the (scalar) orthotropic p-Laplacian, which has
been studied extensively, see [17], with substantial work performed on generalizations focused on
preserving the orthotropic structure, see for instance [9]. However, due to the non-linear mixing
of partial derivatives, one cannot hope to adapt techniques depending upon the orthotropic
structure to study (7) for general rotations M . Hence, improved differentiability for rotations of
the orthotropic p-Laplacian is an open question answered by Theorem 1. This answer is made
explicit in Corollary 1 and the discussion following it. Regularity of functions solving (7) for a
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fixed, but arbitrary, rotation M arise naturally in anisotropic geometric problems, for instance
when studying the regularity of ∥·∥ℓp -energy minimizing surfaces. For a further discussion,
see [22].

To aid in comparing Theorem 1 to the existing literature, we state a simplified version in the
case that F is either 2-smooth or 2-convex and simplify to finite-dimensional systems, i.e., the
case that X=Rm .

Corollary 6. Suppose u ∈ W1,γ(Ω,Rm) solves (FγL). If F is 2-smooth andσ-convex, then whenever
γ≥ 2,

V ∗( jγF (∇u)) ∈ W1,2
loc(Ω) and jγF (∇u) ∈ W1,γ′

loc (Ω). (8)

If F is τ-smooth, and 2-convex, then whenever γ≤ 2,

V (∇u) ∈ W1,2
loc(Ω) and ∇u ∈ W1,γ

loc(Ω). (9)

The dual statement in Corollary 6, that is (8), follows from Theorem 1 when α= min(γ,τ) = 2.
The primal statement of Corollary 6, i.e. (9), follows from Theorem 1 when α= min(σ′,γ′) = 2.

Corollary 6 recovers a number of classical results. To recover standard results for the p-
Laplacian from Corollary 6, note when F = |· | is the Euclidean norm, it is 2-smooth, 2-convex,
and ∇F (z) = z

F (z) . So, in this setting,

V (∇u) =V ∗( jγF (∇u)) = |∇u(x)| p−2
2 ∇u(x).

Therefore, the regularity of V (∇u) when p ≥ 2 and of V ∗( jγF (∇u)) when p ≤ 2 recovers the classical

theorem due to Uhlenbeck, that |∇u| p−2
2 ∇u ∈W 1,2

loc when u is p-harmonic, proven with difference
quotient methods in Euclidean space in [5].

We can also recover results for the orthotropic p-Laplacian. Recall the orthotropic p-Laplacian
is the Finsler γ-Laplacian when F = ∥·∥p and γ= p. When p ≥ 2, ∥ ·∥p is 2-smooth and p-convex.
In this case,

V ∗(∇u) = F ( j p
F (∇u))

p′−2
2 j p

F (∇u) = ∥∇u∥
2−p

2
ℓp

∑
i
|∂i u|p−2∂i uei .

Then, Corollary 6 says that V ∗( jγF (∇u)) ∈ W1,2
loc(Ω) when p ≥ 2. In [9, Theorem 1.1.] a very similar

theorem is proven for generalizations of the orthotropic p-Laplacian, which arise by focusing on
the anisotropic structure. In fact, for the (scalar) orthotropic p-Laplacian [9, Theorem 1.1.] states
that

V ∗(∇u) =
n∑

i=1
|∂i u| 2−p

2 |∂i u|p−2∂i uei ∈ W1,2
loc(Ω).

When p ≤ 2, ∥·∥ℓp is p ′-smooth and 2-convex. So, when u is orthotropic p-harmonic, (9) of
Corollary 6 states

V (∇u) = F (∇u)
2−p′

p′ ∇u = ∥∇u∥
p−2

2
ℓp ∇u ∈W 1,2

loc (Ω) and u ∈W 2,p
loc (Ω).

We believe experts in the field may not be surprised by this result, and might already know it. But,
we have not been able to find an explicit reference in the literature.

Finally, we remark that for any 1 < p < ∞, Corollary 6 also applies to rotations of the or-
thotropic p-Laplacian, see Example 5, which cannot be addressed in the existing literature.

So far we have highlighted the relation of our results to classical regularity statements con-
cerning ∇u, V (∇u), and V ∗( jγF (∇u)). Recently improved regularity for the stress, which herein is
denoted by jγF (∇u), has gained increasing attention. We do not aim to give an overview here, but
highlight some related results to which we refer for further references. In [13] double-sided global
estimates relating ∥DF (∇u)∥W1,2(Ω) and ∥ f ∥L2(Ω) in the case of elliptic equations with Uhlenbeck
structure have been shown. [1] provides a non-linear Caldéron–Zygmund theory in the setting



Max Goering and Lukas Koch 1095

of elliptic equations of p-growth with measure-valued right-hand side. The technique heavily re-
lies on stress regularity. Moreover, regularity transfer (in terms of differentiability) from the right-
hand side to the stress for the p-Laplace operator has been studied in [2]. We note that with re-
gards to the regularity of the right-hand side, our results are weaker than those obtained in the
classical setting. It would be interesting to see whether our results can be improved in order to
capture (sharp) assumptions on the right-hand side. Finally, we remark that in [23] the question
of what structure conditions on F are necessary in order to obtain W1,2

loc-regularity of the stress
for minima of the functional

∫
ΩF (∇u) are studied. The key assumption was found to be quasi-

conformality of the map z → DF (z). It would be interesting to study whether such a result extends
to our setting.

In Section 2, we provide some background results on Banach space geometry and then prove
Lemma 3 in Section 3. We finally prove our main Theorem in Section 4.

2. Preliminaries

Throughout, given any number p ∈ (1,∞), we let p ′ denote its Hölder conjugate. For a given
function u onΩ and h ∈X, denote ∆hu(x) = u(x)−u(x +h). If x ̸∈Ω or x +h ̸∈Ω, we understand
∆hu(x) ≡ 0. We denote by | · | the usual L2-based norm on Rn .

We refer to [24] or [27] for the theory of vector-valued Sobolev and Besov spaces. For our
purposes we only say that if Ω ⊂ Rn and Y is a reflexive Banach space and α ∈ (0,1), the Besov
space Bα,γ

∞ (Ω;Y) is characterized by difference quotients, i.e.,

u ∈ Bα,γ
∞ (Ω;Y) ⇐⇒ ∃C > 0 so that ∥∆hu∥Lp (ω) ≤C |h|α ∀ω⋐Ω. (10)

Further, u ∈ Bα,γ
∞,l oc (Ω;Y) if C is allowed to depend on ω. If α= 1, the same definition gives the

usual Sobolev space W1,p (Ω) and its local variant W1,p
loc (Ω).

2.1. Banach space geometry

Let (X,ρ) be a real Banach space and (X∗,ρ∗) denote its dual. The modulus of convexity

σρ(ϵ) = inf
{

1−ρ
( x + y

2

)
: x, y ∈ {ρ = 1},ρ(x − y) ≥ ϵ

}
and the modulus of smoothness

τρ(ϵ) = 1

2
sup

{
ρ(x + y)+ρ(x − y)−2 : x ∈ {ρ = 1},ρ(y) ≤ ϵ}

are fundamental in understanding the geometry of X.
For τ ∈ (1,2] and σ ∈ [2,∞), we define a Banach space (X,ρ) to be σ- convex if

σρ(ϵ)≳ ϵσ ∀ ϵ ∈ [0,2]

and (X,ρ) is called τ-smooth if
τρ(ϵ)≲ ϵτ ∀ ϵ ∈ [0,∞).

For any γ> 1, the duality mapping jγρ :X→X∗ defined by

jγρ (x) := {
x∗ : ρ(x∗) = ρ(x)γ−1 and 〈x, x∗〉 = ρ(x)γ

}
coincides with the single-valued function

jγρ (x) = ρ(x)γ−1∇ρ(x), (11)

whenever X is τ-smooth and σ-convex for some τ ∈ (1,2] and some σ ∈ [2,∞). See for exam-
ple [32, Properties (J2,J3)]. Moreover a Banach space is reflexive if and only if it is uniformly
smooth or uniformly convex [29, Proposition 1.e.3]. In particular, if (Y,F ) is τ-smooth and σ-
convex, it is reflexive and (10) holds. We recall,
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Proposition 7. A Banach space (X,ρ) is σ-convex and τ-smooth if and only if its dual (X∗,ρ∗) is
τ′-convex and σ′-smooth.

It is also well-known that if τ ∈ (1,2] and σ ∈ [2,∞) then

jγρ ◦ jγ
′

ρ∗ = IdX∗ and jγ
′

ρ∗ ◦ jγρ = IdX, (12)

see for instance [3].

Example 8. We note the following examples of σ-smooth and τ-convex spaces.

(1) ∥ ·∥ℓp is max(p,2)-convex and min(p,2)-smooth for p ∈ (1,∞).
(2) ∥ ·∥Lp is max(p,2)-convex and min(p,2)-smooth for p ∈ (1,∞).
(3) Note that for p ∈ (1,∞), Wm,p (Ω,Yn), equipped with the usual L1-based norm is not τ-

smooth or σ-convex. However, due to Proposition 12, if endowed with the equivalent
norm

∥u∥Wm,p (Ω,Y) =
( ∑
|α|≤m

∥∇αu∥2
Lp (Ω,Y)

) 1
2

it is max(p,2)-convex and min(p,2)-smooth. So, one must be careful since equivalent
norms do not preserve smoothness and convexity of Banach spaces.

We now recall the main results of [32] which are relevant to this article, restated in the special
case of σ-convex and τ-smooth Banach spaces.

Theorem 9. Let (X,ρ) be a Banach space. The following are equivalent:

(1) ρ is σ-convex
(2) For all γ> 1 and every x, y ∈X

〈 jγρ (x)− jγρ (y), x − y〉≳γ (ρ(x)+ρ(y))γ−σρ(x − y)σ. (13)

(3) There exists a γ> 1 so that (13) holds.

Alternatively, the following are equivalent:

(a) ρ is τ-smooth
(b) For all γ> 1 and every x, y ∈X

ρ∗
(

jγρ (x)− jγρ (y)
)
≲γ

(
ρ(x)+ρ(y)

)γ−τ
ρ(x − y)τ−1. (14)

(c) There exists a γ> 1 so that (14) holds.

Remark 10. In light of Proposition 7 and Theorem 9, we note the following dual characterization
of σ-convexity and τ-smoothness of (X,ρ). Namely, ρ is τ-smooth if and only if for every γ> 1(

ρ∗(x∗)+ρ∗(y∗)
)γ′−τ′

ρ∗
(
x∗− y∗)τ′ ≲γ

〈
jγ

′
ρ∗ (x∗)− jγ

′
ρ∗ (y∗), x∗− y∗

〉
∀ x∗, y∗ ∈X∗, (15)

while ρ is σ-smooth if and only if for every γ> 1,

ρ
(

jγ
′

ρ∗ (x∗)− jγ
′

ρ∗ (y∗)
)
≲

(
ρ∗(x∗)+ρ∗(y∗)

)γ′−σ′
ρ∗

(
x∗− y∗)σ′−1 . (16)

We now demonstrate a straightforward relationship between 2-smoothness and 2-convexity
and more standard notions of smoothness and ellipticity in the calculus of variations.

Lemma 11. Suppose F ∈C 2(Rm ⊗Rn \{0},R) is a norm on Rm ⊗Rn . Then (Rm ⊗Rn ,F ) is 2-smooth.
On the other hand, if ρ ∈C 1(Rm ⊗Rn \ {0},R) is a norm and F = ρ2 is uniformly elliptic in the sense
that

〈∇F (x)−∇F (y), x − y〉≳ |x − y |2, (17)

then ρ is 2-convex.
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Proof. First suppose F ∈ C 2(Rm ⊗Rn \ {0},R) is a norm. Let x ∈ {F = 1} and F (y) < 1/2. Then
F (x − y),F (x + y) ∈ [1/2,3/2]. From the regularity of F and the fundamental theorem of calculus,

F (x + y)+F (x − y)−2 = F (x + y)−F (x)+F (x − y)−F (x)

=
∫ 1

0
〈DF (x + t y)−DF (x − t y), y〉dt

= 2
∫ 1

0

∫ 1

0
〈D2F (x − t y +2s y)y, y〉sdsdt

≲ ∥D2F∥L∞(B3/2\B1/2)F (y)2.

The last inequality holds due to equivalence of norms on Rm ⊗Rn .
On the other hand, when F (y) ≥ 1/2,

F (x + y)+F (x − y)−2 ≤ F (x)+F (y)+F (x)+F (y)−2 = 2F (y) ≤ 4F (y)2.

In particular, for all ϵ ∈ [0,∞), τF (ϵ)≲ (1+∥D2F∥L∞(B3/2\B1/2))ϵ2 verifying F is 2-smooth.
Now suppose ρ ∈C 1(Rm ⊗Rn \{0},R), F = ρ2, and (17) holds. Then, the 2-convexity of ρ follows

from Theorem 9(3). Indeed, (17) is precisely (13) when γ=σ= 2. □

We next study the convexity and smoothness properties of the spaces (X⊗Rn ,F ), when F is
defined via (5).

Proposition 12. Let (X,ρ) be a Banach space and define F :X⊗Rn →R by (5). Then

(i) (X ⊗ Rn ,F ) is a Banach space and (X∗ ⊗ Rn ,F∗) is its dual. Here we have defined

F∗(x∗) = (∑
i ρ∗(x∗

i )p ′)1/p ′
.

(ii) (X⊗Rn ,F ) is reflexive if and only if (X,ρ) is reflexive.
(iii) If ρ is τ-smooth then F is min(p,τ)-smooth.
(iv) If ρ is σ-convex then F is max(p,σ)-convex.
(v) F (x ⊗ξ) = ρ(x)∥ξ∥ℓp .

Proof. (i) follows from the linearity of the tensor product and (ii) follows from (i).
We next check (iii). Let x = (x1, . . . , xn) ∈ X⊗Rn and y = (y1, . . . , yn) ∈ X⊗Rn . Note by direct

calculation that

j p
F (x) = ( j p

ρ (x1), . . . , j p
ρ (xn)).

Hence, by (i),

F∗
(

j p
F (x)− j p

F (y)
)= (∑

i
ρ∗

(
j p
ρ (xi )− j p

ρ (yi )
)p ′

) 1
p′

.

Since ρ is τ-smooth, Theorem 9 then implies,

F∗
(

j p
F (x)− j p

F (y)
)≤ (∑

i

((
ρ(xi )+ρ(yi )

)p−τ
ρ(xi − yi )τ−1)p ′

) 1
p′

. (18)

When p ≤ τ, the triangle inequality says (ρ(xi )+ρ(yi ))p−τ ≤ ρ(xi − yi )p−τ. So (18) implies

F∗
(

j p
F (x)− j p

F (y)
)≤ (∑

i
ρ(xi − yi )p

) p−1
p

= F (x − y)p−1.
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By Theorem 9(c), this implies F is p-smooth when p = min(p,τ). On the other hand, when τ≤ p,
it follows from (18), monotonicity of t 7→ t p−τ, and Jensen’s inequality

F∗
(

j p
F (x)− j p

F (y)
)≤ (

F (x)+F (y)
)p−τ

(∑
i
ρ(xi − yi )

p
(
τ−1
p−1

)) p−1
p

≲
(
F (x)+F (y)

)p−τ
(∑

i
ρ(xi − yi )p

) τ−1
p

= (F (x)+F (y))p−τF (x − y)τ−1.

Now, Theorem 9(c) verifies τ-smoothness of F when τ= min(p,τ). This verifies (iii).
To prove (iv), note that by Proposition 7, ρ is σ-convex if and only if ρ∗ is σ′-smooth. Thus by

part (i) and (iii) of this Proposition, F∗ is min(p ′,σ′)-smooth. Since p ′ ≤ σ′ ⇐⇒ σ ≤ p, another
application of Proposition 7 implies (F∗)∗ = F is max(p,σ)-convex as desired.

Finally (v) is a straightforward computation, since x ⊗ξ= (ξ1x, . . . ,ξn x). □

3. A V -functional estimate in Banach spaces

In this section, we prove Lemma 3. In the case when X = Rm and ρ is the Euclidean norm
this result is well-known. However, even in this set-up our elementary proof is new. For the
convenience of the reader, we restate the lemma here. Recall the definition of Vp,q from (6).

Lemma 13. Let (Y,F ) be a Banach space and fix p, q > 1. Then, for any ξ, η ∈Y,

F
(
Vp,q (ξ)−Vp,q (η)

)∼ (
F (ξ)+F (η)

) p−q
q F (ξ−η). (19)

Proof.

Case 1: p −q ≥ 0. For ξ,η ∈Y, convexity of F implies the difference quotient

t 7→ F (ξ+ tη)−F (ξ)

t

is a non-decreasing function for t ∈ [0,∞). Suppose without loss of generality, F (ξ) ≥ F (η) and

define κ= F (η)
F (ξ) ≤ 1. Since p −q ≥ 0, κ

p−q
q ≤ 1. Using F (ξ)κ= F (η) and convexity of F , it follows

F
(
Vp,q (ξ)−Vp,q (η)

)= F (ξ)
p−q

q κ
p−q

q
F

(
ξ−κ

p−q
q η

)
−F (ξ)

κ
p−q

q

+F (ξ)
p
q

≤ F (η)
p−q

q
[
F (ξ−η)−F (ξ)

]+F (ξ)
p
q

= F (η)
p−q

q F (ξ−η)+
(
F (ξ)

p−q
q −F (η)

p−q
q

)
F (ξ)

≲ F (η)
p−q

q F (ξ−η)+F (ξ)
p−q

q F (ξ−η),

where the last line follows by the mean-value theorem applied to t 7→ t
p−q

q on [F (η),F (ξ)]. This
verifies

F (Vp,q (ξ)−Vp,q (η)) ≤
(
F (ξ)

p−q
q +F (η)

p−q
q

)
F (ξ−η)
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which suffices since for a,b > 0 and any α > 0, aα + bα ≤ 2(a + b)α. To confirm the reverse
inequality, assume again without loss of generality, that F (ξ) ≥ F (η). Then, using the reverse
triangle inequality,

F
(
Vp,q (ξ)−Vp,q (η)

)= F
(
F (ξ)

p−q
q (ξ−η)−

(
F (η)

p−q
q −F (ξ)

p−q
q

)
ξ
)

≥ F (η)
p−q

q F (ξ−η)−
(
F (η)

p−q
q −F (ξ)

p−q
q

)
F (ξ)

≥ F (η)
p−q

q F (ξ−η)

≳
(
F (η)+F (ξ)

) p−q
q F (ξ−η)

This is the desired inequality.

Case 2: p −q < 0. Suppose F (ξ) ≥ F (η) and F (ξ)κ = F (η). Then, κ
q−p

q ≤ 1. Akin to the previous
case, we estimate,

F
(
Vp,q (ξ)−Vp,q (η)

)= F (η)
p−q

q κ
q−p

q
F (κ

q−p
q ξ−η)−F (η)

κ
q−p

q

+F (η)
p
q

≤ F (ξ)
p−q

q
[
F (ξ−η)−F (η)

]+F (η)
p
q

= F (ξ)
p−q

q F (ξ−η)+F (η)
p
q −F (η)F (ξ)

p−q
q .

Since F (ξ) ≥ F (η),

F (η)
p
q −F (η)F (ξ)

p−q
q ≤ F (ξ)

p−q
q |F (ξ)−F (η)| ≤ F (ξ)

p−q
q F (ξ−η).

Recalling p−q < 0, combining the two previous estimates with the observation that when |a| ≥ |b|
and α < 0, |a|α ≤ 2−α|a + b|α finishes the first inequality. We now show the opposite. Assume
without loss of generality F (ξ) > F (η) > 0, noting that if F (η) = 0 or F (ξ) = F (η), there is nothing to
prove. Then, using the reverse triangle inequality,

F
(
Vp,q (η)−Vp,q (ξ)

)= F
(
F (η)

p−q
q (η−ξ)−

(
F (ξ)

p−q
q −F (η)

p−q
q

)
ξ
)

≥ F (η)
p−q

q F (η−ξ)−
(
F (ξ)

p−q
q −F (η)

p−q
q

)
F (ξ)

≥ F (η)
p−q

q F (η−ξ)

≳
(
F (η)+F (ξ)

) p−q
q F (η−ξ)

Since F (ξ) = F (−ξ) for all ξ ∈Y, this is the desired inequality. □

We explicitly state a consequence of Lemma 13 in our set-up.

Corollary 14. Let (Y,F ) be a Banach space. Suppose u ∈ W1,p
loc (Ω,Y). Then for all p, q ≥ 0,

F
(
∆hVp,q (∇u)

)∼ (F (∇u)+F (∇uh))
p−q

q F (∆h∇u). (20)

In particular, if p ≥ q,

F (∆h∇u)p ≲ F
(
∆hVp,q (∇u)

)q , (21)

and when p ≤ q, if η ∈Cc (Ω) and A = sptη, β≥ 0,∫
ηβF (∆h∇u)p ≲

(∫
η

qβ
p F

(
∆hVp,q (∇u)

)q
) p

q
(∫

A
(F (∇u)+F (∇uh))p

)1− p
q

(22)
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Proof. Applying Lemma 13 with ξ=∇u and η=∇uh confirms (20).
Suppose p ≥ q . Then F (∆h∇u)p−q ≤ (F (∇u)+F (∇uh))p−q . So (20) implies

F
(
∆hVp,q (∇u)

)q ∼ (F (∇u)+F (∇uh))p−q F (∆h∇u)q ≥ F (∆hu)p ,

confirming (21).
Suppose p ≤ q . η ∈Cc (Ω) and A = sptη. Choosing τ= p−q

q , (20) implies

F (∆h∇u)p ∼ F
(
∆hVp,q (∇u)

)p
(F (∇u)+F (∇uh))

p(q−p)
q .

Now (22) follows by applying Hölder’s inequality with exponents q
p and q

q−p to∫
ηβF (∆h∇u)p ≲

∫
ηβF

(
∆hVp,q (∇u)

)p (F (∇u)+F (∇uh))
p(q−p)

q . □

4. Proof of main theorem

We restate the main theorem for the readers convenience.

Theorem 15. Fix 1 < γ < ∞,τ ∈ (1,2], and σ ∈ [2,∞). Let (X,ρ) be a Banach space, Ω ⊂ Rn a
domain, and F a σ-convex and τ-smooth norm on X⊗Rn satisfying for some norm ∥·∥ on Rn

F (ξ1, . . . ,ξn)≲ ∥(ρ(ξ1), . . . ,ρ(ξn)∥, (23)

Set α = max(min(γ′,σ′),min(γ,τ)), and α∗ = α−1. Assume f ∈ Bα∗,γ′
∞ (Ω). Suppose u ∈ W1,γ(Ω;X)

solves (FγL). Then

V (∇u) ∈ B
α
σ ,σ

∞,loc(Ω) and V ∗( jγF (∇u)) ∈ B
α
τ′ ,τ′

∞,loc(Ω) (24)

In fact, for any Br ⋐Bs ⋐Ω,

∥V (∇u)∥σ
B
α
σ ,σ
∞ (Br )

+∥V∗( jγF (∇u)∥τ′
B
α
τ′ ,τ′
∞ (Br )

≲(s−r ) ∥u∥γ
W1,γ(Bs )

+∥ f ∥γ′
B
α∗ ,γ′
∞ (Bs )

. (25)

Moreover,

∇u ∈ B
α

max{σ,γ} ,γ

∞,loc (Ω) and jγF (∇u) ∈ B
α

max{τ′ ,γ′} ,γ′

∞,loc (Ω). (26)

A key tool in the proof is the following Lemma:

Lemma 16. Let 1 ≤ p <∞. Suppose f ∈ Lp
loc(Ω). Then for allφ ∈ W1,p ′

0 (Ω) and h = |h|e with |e| = 1,∫
Ω
φ∆h f =−|h|

∫
Ω

∂φ

φe

(∫ 1

0
f (x + th)dt

)
.

Proof. The identity holds for smooth functions, since

∆h f = ∂

∂e

∫ 1

0
f (x + th)dt .

The result follows by approximation. □

Proof of Theorem 15. Due to equivalence of norm on Rn , we deduce from (23),

F (z ⊗ξ)≲ ρ(z)|ξ| ∀ z ∈X ∀ ξ ∈Rn . (27)

In fact, due to equivalence of norms on Rn ,

F (z ⊗ξ)≲ ∥ξ1ρ(z), . . . ,ξnρ(z)∥≲ ρ(z)|ξ|. (28)

Suppose for some r < s, Br ⋐ Bs ⋐ Ω. Let η ∈ C∞
c (Ω;R) be a smooth non-negative function

supported on r + s−r
3 with |∇η|≲ (s−r )−1, |∇2η|≲ (s−r )−2 such that η= 1 on Br . Let h = |h|e ∈Rn

with |e| = 1 and write uh(x) = u(x +h) for |h| < s−r
3 .
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Recall that we denote ∆hu(x) = u(x)−u(x +h). Let β> 0 to be determined at a later stage and
test (FγL) against ∆−h

(
ηβ∆hu

)
. Using discrete integration by parts, we find

I :=
∫
Ω
〈∆h jγF (∇u),∇(ηβ∆hu)〉X⊗Rn =

∫
Ω
ηα

〈
∆hu,∆h f

〉
X
=: II . (29)

We write

I =
∫
Ω
〈∆h jγF (∇u),ηβ∆h∇u〉X⊗Rn +β

∫
Ω
ηβ−1〈∆h jγF (∇u),∆hu ⊗∇η〉 =: A1 + A2.

Note that due to (12),

〈∆h jγF (∇u),∆h∇u〉X⊗Rn = 〈∆h jγF (∇u),∆h jγ
′

F∗ ( jγF (∇u))〉X⊗Rn .

Therefore, we bound A1 below by (13) and (15), as

A1 ≳
∫
Ω
ηβ (F (∇u)+F (∇uh))γ−σF (∆h∇u)σ

+
∫
Ω
ηβ

(
F∗( jγF (∇u))+F∗( jγF (∇uh))

)γ′−τ′
F∗(∆h jγF (∇u))τ

′
. (30)

It follows from (20) that (30) is equivalent to

A1 ≳
∫
Ω
ηβF (∆hV (∇u))σ+

∫
Ω
ηβF∗

(
∆hV ∗( jγF (∇u))

)τ′
. (31)

On the other hand, consecutively using Fenchel, Cauchy–Schwarz, (10) and Young’s, we obtain

|II|≲
∫
Ω
ηβρ(∆hu)ρ∗(∆h f )≲ ∥ρ(∆hu)∥Lγ(Br+1/3(s−r ))∥ρ∗(∆h f )∥Lγ′ (Br+1/3(s−r ))

≲ |h|1+α∗
(
∥u∥γ

W1,γ(Bs )
+∥ f ∥γ′

B
α∗ ,γ′
∞ (Bs )

)
. (32)

The claimed regularity statement will follow from combining the observations made so far
with various estimates on A2: a primal estimate, carried out separately in the regime γ ≤ σ and
γ≥σ and similar dual estimates in the regime γ′ ≤ τ′ and γ′ ≥ τ′.
Case 1.1: A primal estimate if γ≤σ. Applying Lemma 16 with f = jγF (∇u) andφ= ηβ−1∆hu⊗∇η,
we get

|A2|≲ |h|
∫
Ω

〈
∂

∂e

(
ηβ−1∆hu ⊗∇η

)
,
∫ 1

0
jγF (∇u(x + th))dt

〉
= |h|

∫
Ω

〈
∆hu ⊗ ∂

∂e
(ηβ−1∇η),

∫ 1

0
jγF (∇u(x + th))dt

〉
+|h|

∫
Ω

〈
∂

∂e
(∆hu)⊗ (ηβ−1∇η),

∫ 1

0
jγF (∇u(x + th))dt

〉
= A21 + A22

Using F∗( jγF (ξ)) = F (ξ)γ−1, (27), and (10), implies

|A21|≲ |h|
∫
Ω

F

(
∆hu ⊗ ∂

∂e

(
ηβ−1∇η

))
F∗

(∫ 1

0
jγF (∇u(x + th))dt

)
≤ |h|

∫
Ω

{
ρ (∆hu) | ∂

∂e
(ηα−1∇η)|

∫ 1

0
F∗

(
jγF (∇u(x + th))dt

)}

≲ |h|∥u∥W1,γ(Bs )|h|
∫

B
r+ 2

3 (s−r )

∫ 1

0
F (∇u)γdt

 1
γ′

≲ |h|2∥u∥W1,γ(Bs )

(∫
Bs

F (∇u)γ
) 1
γ′
≲ |h|2∥u∥γ

W1,γ(Bs )
. (33)
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Choosing β=σ′ and arguing similarly, using (27) and (23)

|A22|≲ |h|
∫
Ω

F

(
∂

∂e
(∆hu)⊗ (ησ

′−1∇η)

)∫ 1

0
F∗

(
jγF (∇u(x + th))

)
dt

≲ |h|
∫
Ω
ρ

(
∆h

∂u

∂e

)
|ησ′−1∇η|

∫ 1

0
F (∇u(x + th))γ−1dt

≲ |h|
∫
Ω

F (∆h∇u)ησ
′−1

∫ 1

0
F (∇u(x + th))γ−1dt

≲ |h|
(∫
Ω

F (∆h∇u)γηγ(σ′−1)
) 1
γ

(∫
Bρ2

∫ 1

0
F (∇u(x + th))γ

) 1
γ′

. (34)

Using (22) with p = γ≤σ= q we find,(∫
Ω

F (∆hu)γηγ(σ′−1)
) 1
γ

≲
(∫

ησ
′
F (∆hV )σ

) 1
σ

(∫
Bρ2

(F (∇u)+F (∇uh))γ
) σ−γ

σγ

.

Plugging this into (34) and applying Young’s inequality yields for any ε> 0,

|A22|≲ ϵ

∫
ησ

′
F (∆hV )σ+C (ϵ)|h|σ′∥∇u∥σ′(γ−1)

Lγ(Bs ) ∥∇u∥
σ−γ
γ(σ−1)

Lγ(Bs )

= ϵ
∫
ησ

′
F (∆hV )σ+C (ϵ)|h|σ′∥∇u∥γLγ(Bs ) (35)

From the PDE, we have A1 + A2 = I ≤ |II|. In particular A1 −|A22| ≤ |A21|+ |II|. Estimating each
term respectively by (30), (35), (33), and (32) yields, choosing ε sufficiently small,∫

Ω
ηβF (∆hV )σ+

∫
Ω
ηβF∗

(
∆hV ∗)τ′ ≲ϵ

(
|h|σ′ +|h|2 +|h|1+α∗

)(
∥u∥γ

W1,γ(Bs )
+∥ f ∥γ′

B
α∗ ,γ′
∞ (Bs )

)
. (36)

Noting α∗ =σ′ and dividing by |h|σ′
implies

∥V (∇u)∥
Bσ

′−1,σ∞ (Br )
+∥V ∗( jγF (∇u))∥

B
σ′
τ′ ,τ′
∞ (Br )

≲(s−r ) ∥u∥γ
W1,γ(Bs )

+∥ f ∥γ′
B
σ′−1,γ′
∞ (Bs )

.

Case 1.2: A primal estimate if γ≥σ. We return to (34), choose β = γ≥ σ≥ 2 and estimate using
Hölder’s inequality and Young’s inequality,

|A22|≲|h|(s − r )−1
(∫
Ω

F (∆h∇u)γηγ
) 1
γ

(∫
Br+ s−r

3

η(γ−2)γ′
∫ 1

0
F (∇u(x + th))γd t

) 1
γ′

≲ε
∫
Ω
ηγF (∆h∇u)γ+C (ε)|h|γ′

∫
Bs

F (∇u)γ.

Applying (21) yields

|A22|≲ ϵ

∫
Ω

F (∆hV )σ+C (ϵ)|h|γ′
∫

Bs

F (∇u)γ. (37)

Now estimating each term in A1−|A22| ≤ |A21|+|II|, respectively by (30), (37), (33), and (32), yields∫
Ω
ηβF (∆hV )σ+

∫
Ω
ηβF∗

(
∆hV ∗)τ′ ≲ϵ

(
|h|γ′ +|h|2 +|h|1+α∗

)(
∥u∥γ

W1,γ(Bs )
+∥ f ∥γ′

B
α∗ ,γ′
∞ (Bs )

)
. (38)

Noting that α∗+1 = γ′, dividing by |h|γ′ yields

∥V (∇u)∥
B
γ′
σ ,σ
∞ (Br )

+∥V ∗( jγF (∇u))∥
B
γ′
τ′ ,τ′
∞ (Br )

≲(s−r ) ∥u∥γ
W 1,γ(Bs )

+∥ f ∥γ′
B
γ′−1,γ′
∞ (Bs )

.
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Case 2.1.: A dual estimate if τ′ ≥ γ′. Choose β= τ. From Fenchel, Hölder, and (10) it follows

|A2| = τ|
∫
Ω
ητ−1〈∆h jγF (∇u),∆hu ⊗∇η〉|

≲
∫
Ω
ητ−1F (∆hu ⊗∇η)F∗

(
∆h jγF (∇u)

)
≲

(∫
Bρ1

ρ(∆hu)γ|∇η|γ
) 1
γ (∫

ηγ
′(τ−1)F∗

(
∆h jγF (∇u)

)γ′) 1
γ′

≤ |h|∥u∥W1,γ(Bs )

(∫
ηγ

′(τ−1)F∗
(
∆h jγF (∇u)

)γ′) 1
γ′

(39)

Since V ∗( jγF (∇u)) = V ∗
γ′,τ′ ( jγF (∇u)), up to replacing F with F∗ and ∇u with jγF (∇u), it follows

from (22) with p = γ′ and q = τ′, that

(∫
ηγ

′(τ−1)F∗
(
∆h jγF (∇u)

)γ′) 1
γ′

≤
(∫

ητF∗
(
∆hV ∗( jγF (∇u))

)τ′) 1
τ′

(∫
Bρ2

(
F∗( jγF (∇u))+F∗( jγF (∇u))

)γ′) τ′−γ′
τ′γ′

≲
(∫

ητF∗
(
∆hV ∗( jγF (∇u))

)τ′) 1
τ′ ∥ jγF (∇u)∥1− γ′

τ′
Lγ′ (Bs )

. (40)

Recalling F∗( jγF (ξ)) = F (ξ)γ−1, we note ∥ jγF (∇u)∥1− γ′
τ′

Lγ′ (Bs )
= ∥∇u∥(γ−1)(1− γ′

τ′ )

Lγ(Bs ) = ∥∇u∥
γ−τ
τ

Lγ(Bs ). Then plug-

ging (40) into (39) and applying Young’s inequality yields for any ε> 0,

|A2|≲ ϵ

∫
ητF∗

(
∆hV ∗( jγF (∇u))

)τ′ +C (ϵ)|h|τ∥∇u∥γ−τLγ(Bs )∥u∥τW1,γ(Bs )

≲ ϵ

∫
ητF∗

(
∆hV ∗( jγF (∇u))

)τ′ +C (ϵ)|h|τ∥u∥γ
W1,γ(Bs )

(41)

Since the PDE implies A1 ≤ |A2| + |II|, choosing ε small enough, and estimating each term
consecutively by (31), (41), and (32) yields∫

Ω
ηβF (∆hV )σ +

∫
Ω
ηβF∗

(
∆hV ∗)τ′ ≲

(|h|τ+|h|2 +|h|1+α∗)(∥u∥γ
W1,γ(Bs )

+∥ f ∥γ′
B
α∗ ,γ′
∞ (Bs )

)
. (42)

Noting α∗−1 = τ, dividing by |h|τ verifies

∥V (∇u)∥
B
τ
σ ,σ
∞ (Br )

+∥∥V ∗( jγF (∇u))
∥∥

Bτ−1,τ′∞ (Br )
≲(s−r ) ∥u∥γ

W1,γ(Bs )
+∥ f ∥γ′

B
τ−1,γ′
∞ (Bs )

.

Case 2.2.: A dual estimate if γ≤ τ. We return to estimating |A2|. Choosing β = γ and using
Hölder’s then Young’s inequalities,

|A2|≲
∫
Ω
ηγ−1F (∆hu ×∇η)F∗(∆h jγF (∇u))

≲
(∫
Ω

F (∆hu ⊗∇η)γ
) 1
γ
(∫
Ω
ηγF∗

(
∆h jγF (∇u)

)γ′) 1
γ′

≲C (ε)|h|γ∥u∥γ
W1,γ(Bρ2 )

+ε
∫
Ω
ηγF∗

(
∆h jγF (∇u)

)γ′
.

Since γ′ ≥ τ′, up to replacing F with F∗, Vp,q with V ∗
γ′,τ′ , and u with jγF (∇u), (21) reads

F∗(
∆h jγF (∇u)

)γ′ ≤ F∗
(
∆hV ∗( jγF (∇u))

)τ′
.
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Hence,

|A2|≲ ϵ

∫
Ω
ηγF∗

(
∆hV ∗( jγF (∇u))

)τ′ +C (ϵ)|h|γ∥u∥W1,γ(Bs ). (43)

By writing A1 ≤ |A2|+ |II| using respectively (31), (43), and (32) we obtain∫
Ω
ηβF (∆hV (∇u))σ+

∫
Ω
ηβF∗

(
∆hV ∗( jγF (∇u))

)τ′
≲

(|h|γ+|h|2 +|h|1+α∗)(∥u∥γ
W 1,γ(Bs )

+∥ f ∥γ′
B
α∗ ,γ′
∞ (Bs )

)
. (44)

Noting α∗+1 = γ, dividing by |h|γ implies

∥V (∇u)∥
B
γ′
σ ,σ
∞ (Br )

+∥V ∗( jγF (∇u))∥
B
γ′
τ′ ,τ′
∞ (Br )

≲(s−r ) ∥u∥γ
W1,γ(Bs )

+∥ f ∥γ′
B
τ,γ′
∞ (Bs )

.

Concluding the proof. One confirms (25), and consequently (24) using Case 1.1, 1.2, 2.1, and
2.2, respectively when α = σ′,γ′,τ, and γ. To deduce (26) from (24), we apply Corollary 14 with
p = γ, q =σ to obtain

∫
Br

F (∆hV (∇u))σ≳


∫

Br

F (∆h∇u)γ γ≥σ(∫
Br

F (∆h∇u)γ
) σ
γ

(∫
Br

(F (∇u)+F (∇uh))γ
)1− σ

γ

γ≤σ.

Similarly with p = γ′, q = τ′, F = F∗ and u = jγF (∇u), Corollary 14 says

∫
Br

F∗
(
∆hV ∗( jγF (∇u)

)τ′
≳


∫

Br

F∗
(
∆h jγF (∇u)

)γ′
γ′ ≥ τ′

(∫
Br

F∗
(
∆h jγF (∇u)

)γ′) τ′
γ′ ∥∇u∥

γ′−τ′
γ′−1

Lγ(Bs ) γ′ ≤ τ′.

Using these estimates to produce further lower bounds for (36), (38), (42), (44) and then
dividing by |h|α verifies (26). □
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