In this paper, we present certain results concerning the distribution of zeros of polynomials of a quaternionic variable and with quaternionic coefficients. We obtain ring shaped regions of Eneström–Kakeya type for the zeros of these polynomials and also extend some classical results from the complex to quaternionic setting.
Révisé le :
Accepté le :
Publié le :
Mir, Abdullah 1 ; Ahmad, Abrar 1
CC-BY 4.0
@article{CRMATH_2023__361_G6_1051_0,
author = {Mir, Abdullah and Ahmad, Abrar},
title = {On the {Enestr\"om{\textendash}Kakeya} theorem for quaternionic polynomials},
journal = {Comptes Rendus. Math\'ematique},
pages = {1051--1062},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G6},
doi = {10.5802/crmath.467},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.467/}
}
TY - JOUR AU - Mir, Abdullah AU - Ahmad, Abrar TI - On the Eneström–Kakeya theorem for quaternionic polynomials JO - Comptes Rendus. Mathématique PY - 2023 SP - 1051 EP - 1062 VL - 361 IS - G6 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.467/ DO - 10.5802/crmath.467 LA - en ID - CRMATH_2023__361_G6_1051_0 ER -
%0 Journal Article %A Mir, Abdullah %A Ahmad, Abrar %T On the Eneström–Kakeya theorem for quaternionic polynomials %J Comptes Rendus. Mathématique %D 2023 %P 1051-1062 %V 361 %N G6 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.467/ %R 10.5802/crmath.467 %G en %F CRMATH_2023__361_G6_1051_0
Mir, Abdullah; Ahmad, Abrar. On the Eneström–Kakeya theorem for quaternionic polynomials. Comptes Rendus. Mathématique, Tome 361 (2023) no. G6, pp. 1051-1062. doi: 10.5802/crmath.467
[1] The Eneström-Kakeya Theorem for polynomials of a quaternionic variable, J. Approx. Theory, Volume 250 (2020), 105325, 10 pages | Zbl | DOI
[2] On the inequalities of Turán, Bernstein and Erdös-Lax in quaternionic setting, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 115 (2021) no. 4, 187, 20 pages | Zbl
[3] On Bernstein and Erdős–Lax inequalities for quaternionic polynomials, C. R. Acad. Sci. Paris, Volume 353 (2015) no. 1, pp. 5-9 | Zbl
[4] Zeros of regular functions and polynomials of a quaternionic variable, Mich. Math. J., Volume 56 (2008) no. 3, pp. 655-667 | MR | Zbl
[5] A new theory of regular function of a quaternionic variable, Adv. Math., Volume 216 (2007), pp. 279-301 | DOI | MR | Zbl
[6] On the multiplicity of zeroes of polynomials with quaternionic coefficients, Milan J. Math., Volume 76 (2008), pp. 15-25 | DOI | Zbl | MR
[7] On the Eneström-Kakeya theorem, Tôhoku Math. J., Volume 20 (1968), pp. 126-136 | Zbl
[8] On the location of zeros polynomials, Can. Math. Bull., Volume 10 (1967), pp. 53-63 | DOI | MR
[9] A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer, 1991
[10] Geometry of Polynomials, Mathematical Surveys, 3, American Mathematical Society, 1966
[11] Topics in Polynomials, Extremal problems, Inequalities, Zeros, World Scientific, 1994 | DOI
[12] Equations in quaternions, Am. Math. Mon., Volume 48 (1941), pp. 654-661 | DOI | MR | Zbl
[13] The roots of a quaternion, Am. Math. Mon., Volume 49 (1942), pp. 386-388 | DOI | Zbl
[14] Zeros of quaternion polynomials, Appl. Math. Lett., Volume 14 (2001) no. 2, pp. 237-239 | DOI | MR | Zbl
[15] Quaternionic analysis, Math. Proc. Camb. Philos. Soc., Volume 85 (1979), pp. 199-224 | DOI | MR | Zbl
[16] A note on Eneström-Kakeya theorem for a polynomial with quaternionic variable, Arab. J. Math., Volume 9 (2020) no. 3, pp. 707-714 | Zbl | MR | DOI
Cité par Sources :





