Let be a sequence of points on a line with consecutive points at distance one. Answering a question raised by Fox and the first author and independently by Arman and Tsaturian, we show that there is a natural number and a red/blue-colouring of for every that contains no red copy of and no blue copy of .
Accepté le :
Publié le :
Conlon, David 1 ; Wu, Yu-Han 2
CC-BY 4.0
@article{CRMATH_2023__361_G5_897_0,
author = {Conlon, David and Wu, Yu-Han},
title = {More on lines in {Euclidean} {Ramsey} theory},
journal = {Comptes Rendus. Math\'ematique},
pages = {897--901},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G5},
doi = {10.5802/crmath.452},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.452/}
}
TY - JOUR AU - Conlon, David AU - Wu, Yu-Han TI - More on lines in Euclidean Ramsey theory JO - Comptes Rendus. Mathématique PY - 2023 SP - 897 EP - 901 VL - 361 IS - G5 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.452/ DO - 10.5802/crmath.452 LA - en ID - CRMATH_2023__361_G5_897_0 ER -
%0 Journal Article %A Conlon, David %A Wu, Yu-Han %T More on lines in Euclidean Ramsey theory %J Comptes Rendus. Mathématique %D 2023 %P 897-901 %V 361 %N G5 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.452/ %R 10.5802/crmath.452 %G en %F CRMATH_2023__361_G5_897_0
Conlon, David; Wu, Yu-Han. More on lines in Euclidean Ramsey theory. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 897-901. doi: 10.5802/crmath.452
[1] Equally spaced collinear points in Euclidean Ramsey theory (2017) (https://arxiv.org/abs/1705.04640)
[2] A result in asymmetric Euclidean Ramsey theory, Discrete Math., Volume 341 (2018) no. 5, pp. 1502-1508 | Zbl | DOI
[3] Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, 10, Springer, 2006
[4] Lines in Euclidean Ramsey theory, Discrete Comput. Geom., Volume 61 (2019) no. 1, pp. 218-225 | DOI | Zbl
[5] Note on a Ramsey-type problem in geometry, J. Comb. Theory, Ser. A, Volume 65 (1994) no. 2, pp. 302-306 | DOI | Zbl
[6] Euclidean Ramsey theorems I, J. Comb. Theory, Ser. A, Volume 14 (1973), pp. 341-363 | DOI | Zbl
[7] Euclidean Ramsey theorems II, Infinite and finite sets (Colloq., Keszthely, 1973), Vol. I (Colloquia Mathematica Societatis János Bolyai), Volume 529, North-Holland, 1973, pp. 529-557
[8] Euclidean Ramsey theorems III, Infinite and finite sets (Colloq., Keszthely, 1973), Vol. I (Colloquia Mathematica Societatis János Bolyai), Volume 529, North-Holland, 1973, pp. 559-583
[9] A partition property of simplices in Euclidean space, J. Am. Math. Soc., Volume 3 (1990) no. 1, pp. 1-7 | Zbl | DOI
[10] Intersection theorems with geometric consequences, Combinatorica, Volume 1 (1981), pp. 357-368 | Zbl | DOI
[11] Ramsey type theorems in the plane, J. Comb. Theory, Ser. A, Volume 27 (1979), pp. 152-160 | DOI | Zbl
[12] Permutation groups in Euclidean Ramsey Theory, Proc. Am. Math. Soc., Volume 112 (1991) no. 3, pp. 899-907 | Zbl | DOI
[13] Monochromatic translates of configurations in the plane, J. Comb. Theory, Ser. A, Volume 93 (2001) no. 1, pp. 173-176 | DOI | Zbl
[14] A Euclidean Ramsey result in the plane, Electron. J. Comb., Volume 24 (2017) no. 4, P4.35, 9 pages | Zbl
Cité par Sources :





