Logique mathématique
Tiltan and Superclub
Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 853-861

We show that one can force superclub with an arbitrarily large value of cov(). We prove that the club principle is consistent with an arbitrarily large value of add(). We also prove that if κ is regular then superclub at κ + implies Q(κ + ,κ + ,κ + ).

Nous prouvons que superclub est consistant avec une valeur arbitrairement élevée de cov(). Nous prouvons que trèfle est consistant avec une valeur arbitrairement élevée de add(). Nous prouvons aussi que superclub en κ + implique Q(κ + ,κ + ,κ + ) si κ est un cardinal régulier.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.434
Classification : 05C63, 03E02, 03E17
Keywords: Superclub, club (tiltan), invariants of measure and category, infinite graphs, square brackets

Garti, Shimon 1 ; Shelah, Saharon 2, 3

1 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2 EinsteinInstitute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
3 Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_853_0,
     author = {Garti, Shimon and Shelah, Saharon},
     title = {Tiltan and {Superclub}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {853--861},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G5},
     doi = {10.5802/crmath.434},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.434/}
}
TY  - JOUR
AU  - Garti, Shimon
AU  - Shelah, Saharon
TI  - Tiltan and Superclub
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 853
EP  - 861
VL  - 361
IS  - G5
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.434/
DO  - 10.5802/crmath.434
LA  - en
ID  - CRMATH_2023__361_G5_853_0
ER  - 
%0 Journal Article
%A Garti, Shimon
%A Shelah, Saharon
%T Tiltan and Superclub
%J Comptes Rendus. Mathématique
%D 2023
%P 853-861
%V 361
%N G5
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.434/
%R 10.5802/crmath.434
%G en
%F CRMATH_2023__361_G5_853_0
Garti, Shimon; Shelah, Saharon. Tiltan and Superclub. Comptes Rendus. Mathématique, Tome 361 (2023) no. G5, pp. 853-861. doi: 10.5802/crmath.434

[1] Brendle, Jörg Cardinal invariants of the continuum and combinatorics on uncountable cardinals, Ann. Pure Appl. Logic, Volume 144 (2006) no. 1-3, pp. 43-72 | DOI | Zbl

[2] Chen, William Variations of the stick principle, Eur. J. Math., Volume 3 (2017) no. 3, pp. 650-658 | Zbl | DOI

[3] Chen, William; Garti, Shimon; Weinert, Thilo Cardinal characteristics of the continuum and partitions, Isr. J. Math., Volume 235 (2020) no. 1, pp. 13-38 | DOI | Zbl

[4] Fuchino, Sakaé; Shelah, Saharon; Soukup, Lajos Sticks and clubs, Ann. Pure Appl. Logic, Volume 90 (1997) no. 1-3, pp. 57-77 | DOI | Zbl

[5] Galvin, Fred; Hajnal, András; Komjáth, Péter Edge decompositions of graphs with no large independent sets, Publ. Inst. Math., Nouv. Sér., Volume 57 (1995), pp. 71-80 | Zbl

[6] Garti, Shimon Dense free sets, Order, Volume 33 (2016) no. 3, pp. 411-417 | DOI | Zbl

[7] Garti, Shimon Tiltan, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 4, pp. 351-359 | DOI | Numdam | Zbl

[8] Hechler, Stephen H. On the existence of certain cofinal subsets of ω ω, Axiomatic set theory. Proceedings of the symposium in pure mathematics of the American Mathematical Society (Los Angeles 1967) (Proceedings of Symposia in Pure Mathematics), Volume 13, American Mathematical Society, 1974, pp. 155-173

[9] Jensen, R. Björn The fine structure of the constructible hierarchy, Ann. Math. Logic, Volume 4 (1972), pp. 229-308 erratum in ibid. 4 (1972), p. 443, with a section by Jack Silver | Zbl | DOI

[10] Miller, Arnold W. Some properties of measure and category, Trans. Am. Math. Soc., Volume 266 (1981) no. 1, pp. 93-114 | DOI | Zbl

[11] Muthuvel, Kandasamy Free sets for set mappings satisfying some intersection conditions, Topology Appl., Volume 183 (2015), pp. 127-129 | DOI | Zbl

[12] Ostaszewski, Adam J. On countably compact, perfectly normal spaces, J. Lond. Math. Soc., Volume 14 (1976) no. 3, pp. 505-516 | DOI | Zbl

[13] Primavesi, Alexander Guessing axioms, invariance and Suslin trees, Ph. D. Thesis, University of East Anglia (UK) (2011)

[14] Rosłanowski, Andrzej; Shelah, Saharon Sweet & sour and other flavours of ccc forcing notions, Arch. Math., Volume 43 (2004) no. 5, pp. 583-663 | DOI | Zbl

[15] Shelah, Saharon Can you take Solovay’s inaccessible away?, Isr. J. Math., Volume 48 (1984) no. 1, pp. 1-47 | Zbl | DOI

[16] Shelah, Saharon Proper and improper forcing, Perspectives in Mathematical Logic, Springer, 1998 | DOI

[17] Stern, Jacques Regularity properties of definable sets of reals, Ann. Pure Appl. Logic, Volume 29 (1985) no. 3, pp. 289-324 | Zbl | DOI

[18] Todorcevic, Stevo Partitioning pairs of countable ordinals, Acta Math., Volume 159 (1987) no. 3, pp. 3-4

[19] Truss, John K. The noncommutativity of random and generic extensions, J. Symb. Log., Volume 48 (1983) no. 4, pp. 1008-1012 | Zbl | DOI

Cité par Sources :