We show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham–Wu decomposition is of Cahen–Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlier result by Romero and Sánchez.
Révisé le :
Accepté le :
Publié le :
Keywords: Lorentzian manifolds, Lorentzian symmetric spaces, geodesic completeness
Leistner, Thomas 1 ; Munn, Thomas 2
CC-BY 4.0
@article{CRMATH_2023__361_G4_819_0,
author = {Leistner, Thomas and Munn, Thomas},
title = {Completeness of certain compact {Lorentzian} locally symmetric spaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {819--824},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G4},
doi = {10.5802/crmath.449},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.449/}
}
TY - JOUR AU - Leistner, Thomas AU - Munn, Thomas TI - Completeness of certain compact Lorentzian locally symmetric spaces JO - Comptes Rendus. Mathématique PY - 2023 SP - 819 EP - 824 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.449/ DO - 10.5802/crmath.449 LA - en ID - CRMATH_2023__361_G4_819_0 ER -
%0 Journal Article %A Leistner, Thomas %A Munn, Thomas %T Completeness of certain compact Lorentzian locally symmetric spaces %J Comptes Rendus. Mathématique %D 2023 %P 819-824 %V 361 %N G4 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.449/ %R 10.5802/crmath.449 %G en %F CRMATH_2023__361_G4_819_0
Leistner, Thomas; Munn, Thomas. Completeness of certain compact Lorentzian locally symmetric spaces. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 819-824. doi: 10.5802/crmath.449
[1] Compact affine manifolds with precompact holonomy are geodesically complete, J. Math. Anal. Appl., Volume 436 (2016) no. 2, pp. 1369-1371 | MR | DOI | Zbl
[2] On the full holonomy group of Lorentzian manifolds, Math. Z., Volume 277 (2014) no. 3-4, pp. 797-828 | Zbl | MR | DOI
[3] Lorentzian symmetric spaces, Bull. Am. Math. Soc., Volume 76 (1970), pp. 585-591 | Zbl | MR | DOI
[4] Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., Volume 95 (1989) no. 3, pp. 615-628 | Zbl | MR | DOI
[5] Géométries lorentziennes de dimension 3: classification et complétude, Geom. Dedicata, Volume 149 (2010), pp. 243-273 | Zbl | DOI
[6] Compact quotients of Cahen-Wallach spaces, Memoirs of the American Mathematical Society, 1264, American Mathematical Society, 2019, v+84 pages
[7] Complétude des variétés lorentziennes à courbure constante, Math. Ann., Volume 306 (1996) no. 2, pp. 353-370 | Zbl | MR | DOI
[8] Completeness of compact Lorentzian manifolds with abelian holonomy, Math. Ann., Volume 364 (2016) no. 3-4, pp. 1469-1503 | Zbl | MR | DOI
[9] On completeness of homogeneous pseudo-riemannian manifolds, Math. J. Indiana Univ., Volume 22 (1973), pp. 1065-1066 | Zbl | MR | DOI
[10] On completeness and dynamics of compact Brinkmann spacetimes (2022) (https://arxiv.org/abs/2205.07243)
[11] Symmetric spaces, geometric manifolds and geodesic completeness, 2021 (Master’s thesis, University of Adelaide, School of Mathematical Sciences, https://hdl.handle.net/2440/134331)
[12] Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press Inc., 1983, xiii+468 pages | MR
[13] Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv., Volume 26 (1952), pp. 328-344 | Zbl
[14] New properties and examples of incomplete Lorentzian tori, J. Math. Phys., Volume 35 (1992) no. 4, pp. 1992-1997 | MR | DOI | Zbl
[15] Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field, Proc. Am. Math. Soc., Volume 123 (1995) no. 9, pp. 2831-2833 | Zbl | MR | DOI
[16] On the de Rham decomposition theorem, Ill. J. Math., Volume 8 (1964), pp. 291-311 | MR
Cité par Sources :





