Géométrie et Topologie
Completeness of certain compact Lorentzian locally symmetric spaces
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 819-824

We show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham–Wu decomposition is of Cahen–Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlier result by Romero and Sánchez.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.449
Classification : 53C50, 53C35
Keywords: Lorentzian manifolds, Lorentzian symmetric spaces, geodesic completeness

Leistner, Thomas 1 ; Munn, Thomas 2

1 School of Mathematical Sciences, University of Adelaide, SA 5005, Australia
2 Lund University, Faculty of Science, Centre for Mathematical Sciences, Box 118, 22100 Lund, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_819_0,
     author = {Leistner, Thomas and Munn, Thomas},
     title = {Completeness of certain compact {Lorentzian} locally symmetric spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {819--824},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     doi = {10.5802/crmath.449},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.449/}
}
TY  - JOUR
AU  - Leistner, Thomas
AU  - Munn, Thomas
TI  - Completeness of certain compact Lorentzian locally symmetric spaces
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 819
EP  - 824
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.449/
DO  - 10.5802/crmath.449
LA  - en
ID  - CRMATH_2023__361_G4_819_0
ER  - 
%0 Journal Article
%A Leistner, Thomas
%A Munn, Thomas
%T Completeness of certain compact Lorentzian locally symmetric spaces
%J Comptes Rendus. Mathématique
%D 2023
%P 819-824
%V 361
%N G4
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.449/
%R 10.5802/crmath.449
%G en
%F CRMATH_2023__361_G4_819_0
Leistner, Thomas; Munn, Thomas. Completeness of certain compact Lorentzian locally symmetric spaces. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 819-824. doi: 10.5802/crmath.449

[1] Aké Hau, Luis Alberto; Sánchez, Miguel Compact affine manifolds with precompact holonomy are geodesically complete, J. Math. Anal. Appl., Volume 436 (2016) no. 2, pp. 1369-1371 | MR | DOI | Zbl

[2] Baum, Helga; Lärz, Kordian; Leistner, Thomas On the full holonomy group of Lorentzian manifolds, Math. Z., Volume 277 (2014) no. 3-4, pp. 797-828 | Zbl | MR | DOI

[3] Cahen, Michel; Wallach, Nolan Lorentzian symmetric spaces, Bull. Am. Math. Soc., Volume 76 (1970), pp. 585-591 | Zbl | MR | DOI

[4] Carrière, Yves Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., Volume 95 (1989) no. 3, pp. 615-628 | Zbl | MR | DOI

[5] Dumitrescu, Sorin; Zeghib, Abdelghani Géométries lorentziennes de dimension 3: classification et complétude, Geom. Dedicata, Volume 149 (2010), pp. 243-273 | Zbl | DOI

[6] Kath, Ines; Olbrich, Martin Compact quotients of Cahen-Wallach spaces, Memoirs of the American Mathematical Society, 1264, American Mathematical Society, 2019, v+84 pages

[7] Klingler, Bruno Complétude des variétés lorentziennes à courbure constante, Math. Ann., Volume 306 (1996) no. 2, pp. 353-370 | Zbl | MR | DOI

[8] Leistner, Thomas; Schliebner, Daniel Completeness of compact Lorentzian manifolds with abelian holonomy, Math. Ann., Volume 364 (2016) no. 3-4, pp. 1469-1503 | Zbl | MR | DOI

[9] Marsden, Jerrold On completeness of homogeneous pseudo-riemannian manifolds, Math. J. Indiana Univ., Volume 22 (1973), pp. 1065-1066 | Zbl | MR | DOI

[10] Mehidi, Lilia; Zeghib, Abdelghani On completeness and dynamics of compact Brinkmann spacetimes (2022) (https://arxiv.org/abs/2205.07243)

[11] Munn, Thomas J. Symmetric spaces, geometric manifolds and geodesic completeness, 2021 (Master’s thesis, University of Adelaide, School of Mathematical Sciences, https://hdl.handle.net/2440/134331)

[12] O’Neill, Barrett Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press Inc., 1983, xiii+468 pages | MR

[13] de Rham, Georges Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv., Volume 26 (1952), pp. 328-344 | Zbl

[14] Romero, Alfonso; Sánchez, Miguel New properties and examples of incomplete Lorentzian tori, J. Math. Phys., Volume 35 (1992) no. 4, pp. 1992-1997 | MR | DOI | Zbl

[15] Romero, Alfonso; Sánchez, Miguel Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field, Proc. Am. Math. Soc., Volume 123 (1995) no. 9, pp. 2831-2833 | Zbl | MR | DOI

[16] Wu, Hung-Hsi On the de Rham decomposition theorem, Ill. J. Math., Volume 8 (1964), pp. 291-311 | MR

Cité par Sources :