Théorie des groupes
On the occurrence of elementary abelian p-groups as the Schur multiplier of non-abelian p-groups
Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 803-806

We prove that every elementary abelian p-group, for odd primes p, occurs as the Schur multiplier of some non-abelian finite p-group.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.445
Classification : 20J99, 20D15
Keywords: Schur multiplier, finite $p$-group

Rai, Pradeep K. 1

1 Mahindra University, Hyderabad, Telangana, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_803_0,
     author = {Rai, Pradeep K.},
     title = {On the occurrence of elementary abelian $p$-groups as the {Schur} multiplier of non-abelian $p$-groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {803--806},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G4},
     doi = {10.5802/crmath.445},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.445/}
}
TY  - JOUR
AU  - Rai, Pradeep K.
TI  - On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 803
EP  - 806
VL  - 361
IS  - G4
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.445/
DO  - 10.5802/crmath.445
LA  - en
ID  - CRMATH_2023__361_G4_803_0
ER  - 
%0 Journal Article
%A Rai, Pradeep K.
%T On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups
%J Comptes Rendus. Mathématique
%D 2023
%P 803-806
%V 361
%N G4
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.445/
%R 10.5802/crmath.445
%G en
%F CRMATH_2023__361_G4_803_0
Rai, Pradeep K. On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 803-806. doi: 10.5802/crmath.445

[1] Blackburn, Norman; Evens, Leonard Schur multipliers of p-groups, J. Reine Angew. Math., Volume 309 (1979), pp. 100-113 | MR | Zbl

[2] Eick, Bettina; Ghorbanzadeh, Taleea Jalaeeyan Computing the Schur multipliers of the Lie p-rings in the family defined by a symbolic Lie p-ring presentation, J. Symb. Comput., Volume 106 (2021), pp. 68-77 | Zbl | MR | DOI

[3] Hatui, Sumana; Kakkar, Vipul; Yadav, Manoj K. The Schur multiplier of groups of order p 5 , J. Group Theory, Volume 22 (2019) no. 4, pp. 647-687 | Zbl | MR | DOI

[4] Karpilovsky, Gregory The Schur multiplier, London Mathematical Society Monographs. New Series, 2, Clarendon Press, 1987 | MR

[5] The Kourovka notebook. Unsolved problems in group theory (Khukhro, Evgeniĭ I.; Mazurov, Viktor D., eds.), Sobolev Institute of Mathematics, 2022

[6] Moravec, Primoź A talk in Groups St Andrews, 2009 (https://mathshistory.st-andrews.ac.uk/Groups/2009/slides/moravec.pdf)

[7] Rai, Pradeep K. On the Schur multiplier of the Special p-groups, J. Pure Appl. Algebra, Volume 222 (2018) no. 2, pp. 316-322 | Zbl | MR

Cité par Sources :