We prove that every elementary abelian -group, for odd primes , occurs as the Schur multiplier of some non-abelian finite -group.
Révisé le :
Accepté le :
Publié le :
Keywords: Schur multiplier, finite $p$-group
Rai, Pradeep K. 1
CC-BY 4.0
@article{CRMATH_2023__361_G4_803_0,
author = {Rai, Pradeep K.},
title = {On the occurrence of elementary abelian $p$-groups as the {Schur} multiplier of non-abelian $p$-groups},
journal = {Comptes Rendus. Math\'ematique},
pages = {803--806},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G4},
doi = {10.5802/crmath.445},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.445/}
}
TY - JOUR AU - Rai, Pradeep K. TI - On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups JO - Comptes Rendus. Mathématique PY - 2023 SP - 803 EP - 806 VL - 361 IS - G4 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.445/ DO - 10.5802/crmath.445 LA - en ID - CRMATH_2023__361_G4_803_0 ER -
%0 Journal Article %A Rai, Pradeep K. %T On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups %J Comptes Rendus. Mathématique %D 2023 %P 803-806 %V 361 %N G4 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.445/ %R 10.5802/crmath.445 %G en %F CRMATH_2023__361_G4_803_0
Rai, Pradeep K. On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups. Comptes Rendus. Mathématique, Tome 361 (2023) no. G4, pp. 803-806. doi: 10.5802/crmath.445
[1] Schur multipliers of p-groups, J. Reine Angew. Math., Volume 309 (1979), pp. 100-113 | MR | Zbl
[2] Computing the Schur multipliers of the Lie p-rings in the family defined by a symbolic Lie p-ring presentation, J. Symb. Comput., Volume 106 (2021), pp. 68-77 | Zbl | MR | DOI
[3] The Schur multiplier of groups of order , J. Group Theory, Volume 22 (2019) no. 4, pp. 647-687 | Zbl | MR | DOI
[4] The Schur multiplier, London Mathematical Society Monographs. New Series, 2, Clarendon Press, 1987 | MR
[5] The Kourovka notebook. Unsolved problems in group theory (Khukhro, Evgeniĭ I.; Mazurov, Viktor D., eds.), Sobolev Institute of Mathematics, 2022
[6] A talk in Groups St Andrews, 2009 (https://mathshistory.st-andrews.ac.uk/Groups/2009/slides/moravec.pdf)
[7] On the Schur multiplier of the Special -groups, J. Pure Appl. Algebra, Volume 222 (2018) no. 2, pp. 316-322 | Zbl | MR
Cité par Sources :





