Analyse fonctionnelle, Équations aux dérivées partielles
An elementary approach to the homological properties of constant-rank operators
Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 45-63

We give a simple and constructive extension of Raiță’s result that every constant-rank operator possesses an exact potential and an exact annihilator. Our construction is completely self-contained and provides an improvement over the order of the operators constructed by Raiță and the order of the explicit annihilators for elliptic operators due to Van Schaftingen. We also give an abstract construction of an optimal annihilator for constant-rank operators, which extends the optimal construction of Van Schaftingen for elliptic operators. Lastly, we discuss the homological properties of operators in relation to the homological properties of their associated symbols. We establish that the constant-rank property is a sufficient and necessary condition for the validity of a generalized Poincaré lemma on spaces of homogeneous maps over d , and we prove that the existence of potentials on spaces of periodic maps requires a strictly weaker condition than the constant-rank property.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.388
Classification : 35E20, 47F10, 13D02

Arroyo-Rabasa, Adolfo 1 ; Simental, José 2

1 Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México. Ciudad Universitaria, Mexico City, Mexico
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_45_0,
     author = {Arroyo-Rabasa, Adolfo and Simental, Jos\'e},
     title = {An elementary approach to the homological properties of constant-rank operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {45--63},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G1},
     doi = {10.5802/crmath.388},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.388/}
}
TY  - JOUR
AU  - Arroyo-Rabasa, Adolfo
AU  - Simental, José
TI  - An elementary approach to the homological properties of constant-rank operators
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 45
EP  - 63
VL  - 361
IS  - G1
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.388/
DO  - 10.5802/crmath.388
LA  - en
ID  - CRMATH_2023__361_G1_45_0
ER  - 
%0 Journal Article
%A Arroyo-Rabasa, Adolfo
%A Simental, José
%T An elementary approach to the homological properties of constant-rank operators
%J Comptes Rendus. Mathématique
%D 2023
%P 45-63
%V 361
%N G1
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.388/
%R 10.5802/crmath.388
%G en
%F CRMATH_2023__361_G1_45_0
Arroyo-Rabasa, Adolfo; Simental, José. An elementary approach to the homological properties of constant-rank operators. Comptes Rendus. Mathématique, Tome 361 (2023) no. G1, pp. 45-63. doi: 10.5802/crmath.388

[1] Agmon, Shmuel; Douglis, Avron; Nirenberg, Louis Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623-727 | Zbl | MR | DOI

[2] Agmon, Shmuel; Douglis, Avron; Nirenberg, Louis Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35-92 | Zbl | MR | DOI

[3] Arroyo-Rabasa, Adolfo Slicing and fine properties for functions with bounded 𝒜-variation (2020) (https://arxiv.org/abs/2009.13513) | DOI

[4] Arroyo-Rabasa, Adolfo Characterization of generalized young measures generated by 𝒜-free measures, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 1, pp. 235-325 | Zbl | MR | DOI

[5] Arroyo-Rabasa, Adolfo; De Philippis, Guido; Rindler, Filip Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints, Adv. Calc. Var., Volume 13 (2020) no. 3, pp. 219-255 | Zbl | MR | DOI

[6] Arroyo-Rabasa, Adolfo; Skorobogatova, Anna A look into some of the fine properties of functions with bounded 𝒜-variation (2019) (https://arxiv.org/abs/1911.08474) | DOI

[7] Borel, Armand; Grivel, Pierre-Paul; Kaup, Burchard; Haefliger, André; Malgrange, Bernard; Ehless, F. Algebraic D-modules, Perspectives in Mathematics, 2, Academic Press Inc., 1987 | Zbl | MR

[8] Breit, Dominic; Diening, Lars; Gmeineder, Franz On the trace operator for functions of bounded 𝔸-variation, Anal. PDE, Volume 13 (2020) no. 2, pp. 559-594 | Zbl | MR | DOI

[9] El Manssour, Rida Ait; Härkönen, Marc; Sturmfels, Bernd Linear PDE with constant coefficients, Glasg. Math. J. (2021), pp. 1-26 | DOI

[10] Fonseca, Irene; Müller, Stefan 𝒜-quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal., Volume 30 (1999) no. 6, pp. 1355-1390 | Zbl | MR | DOI

[11] Gmeineder, Franz; Schiffer, Stefan Natural annihilators and operators of constant rank over (2022) (https://arxiv.org/abs/2203.10355) | DOI

[12] Grafakos, Loukas Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2014 | Zbl | MR | DOI

[13] Guerra, André; Raiţă, Bogdan On the necessity of the constant rank condition for L p estimates, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 9-10, pp. 1091-1095 | Zbl | MR | DOI

[14] Guerra, André; Raiţă, Bogdan Quasiconvexity, null Lagrangians, and Hardy space integrability under constant rank constraints, Arch. Ration. Mech. Anal., Volume 245 (2022) no. 1, pp. 279-320 | MR | Zbl | DOI

[15] Guerra, André; Raiţă, Bogdan; Schrecker, Matthew R. I. Compensated compactness: continuity in optimal weak topologies, J. Funct. Anal., Volume 283 (2022) no. 7, 109596 | Zbl | MR | DOI

[16] Gustafson, Derek A generalized Poincaré inequality for a class of constant coefficient differential operators, Proc. Am. Math. Soc., Volume 139 (2011) no. 8, pp. 2721-2728 | Zbl | MR | DOI

[17] Härkönen, Marc; Hirsch, Jonas; Sturmfels, Bernd Making Waves (2021) (https://arxiv.org/abs/2111.14045) | DOI

[18] Härkönen, Marc; Nicklasson, Lisa; Raiţă, Bogdan Syzygies, constant rank, and beyond (2021) (https://arxiv.org/abs/2112.12663) | DOI

[19] Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki D-modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkhäuser, 2008 (Translated from the 1995 Japanese edition by Takeuchi) | Zbl | MR | DOI

[20] Kato, Tosio On a coerciveness theorem by Schulenberger and Wilcox, Indiana Univ. Math. J., Volume 24 (1974/75), pp. 979-985 | Zbl | MR | DOI

[21] Kristensen, Jan; Raiţă, Bogdan Oscillation and concentration in sequences of PDE constrained measures (2019) (https://arxiv.org/abs/1912.09190) | DOI

[22] Manivel, Laurent Symmetric functions, Schubert polynomials and degeneracy loci, SMF/AMS Texts and Monographs, 6, American Mathematical Society; Société Mathématique de France, 2001 (Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3) | Zbl | MR

[23] Murat, François Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981) no. 1, pp. 69-102 | Zbl | MR

[24] Plücker, Julius On a new geometry of space, Royal Society, 1865

[25] Raiţă, Bogdan Potentials for 𝒜-quasiconvexity, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 3, 105 | Zbl | MR | DOI

[26] Sarason, Leonard Remarks on an inequality of Schulenberger and Wilcox, Ann. Mat. Pura Appl., Volume 92 (1972), pp. 23-28 | Zbl | MR | DOI

[27] Schulenberger, John R.; Wilcox, Calvin H. A coerciveness inequality for a class of nonelliptic operators of constant deficit, Ann. Mat. Pura Appl., Volume 92 (1972), pp. 77-84 | Zbl | MR | DOI

[28] Smith, Kennan T. Inequalities for formally positive integro-differential forms, Bull. Am. Math. Soc., Volume 67 (1961), pp. 368-370 | Zbl | MR | DOI

[29] Smith, Kennan T. Formulas to represent functions by their derivatives, Math. Ann., Volume 188 (1970), pp. 53-77 | Zbl | MR | DOI

[30] Triebel, Hans Theory of function spaces, Monographs in Mathematics, 78, Birkhäuser, 1983, 284 pages | Zbl | MR | DOI

[31] Triebel, Hans Tempered homogeneous function spaces, EMS Series of Lectures in Mathematics, European Mathematical Society, 2015 | Zbl | MR | DOI

[32] Van Schaftingen, Jean Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 877-921 | Zbl | MR | DOI

[33] Wilcox, Calvin H. A coerciveness inequality for a class of nonelliptic operators and its applications, Séminaire Goulaouic–Schwartz 1970–1971: Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 30, Centre de Math., École Polytech., Paris, 1971, 30 | Zbl | MR

Cité par Sources :