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Abstract. The unstable Adams spectral sequence is a spectral sequence that starts from algebraic information
about the mod 2 cohomology H* (X) of a space X as an unstable algebra over the Steenrod algebra <, and
converges, in good cases, to the 2-localized homotopy groups of X. Bousfield and Don Davis looked at the
case when X was either of the infinite matrix groups SO or U. Bousfield and Davis created algebraic spectral
sequences and conjectured that they agreed with the unstable Adams spectral sequences for SO and U. To
this end the following algebraic decomposition must hold

Ext}), (H* (RP®,272/2)) = @Ext], (Mn/ My_1,5Z/2)
n

where My € My c --- is the well known dyadic filtration of the «/-module a* (RPOO, A 2) =[5 [u] given by the
dyadic expansion of the powers of u. This paper aims at showing that this decomposition holds for numerous
values of s and ¢.
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1. Introduction

In this article, we study a conjecture of Bousfield on the unstable Adams spectral sequence for
SO and U. This is first stated in the original paper [2] of Bousfield and Davis and is studied by
Kathryn Lesh in [5]. We begin by recalling the precise statement of the conjecture. We work at
the prime 2 and for a topological space X, we write H* (X) for H* (X;[F»). Let o/ be the Steenrod
algebra. An N—graded commutative </ —algebra K is called an unstable algebra if the Steenrod
action is unstable, represents the Frobenius twist

Sk = 0 ifk>n,
TX=12 ifk=n,
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1790 Nguyén Thé& Cudng

for all x € K", and satisfies the Cartan formula

k
Sq* ab) =Y (Sqia) (qu*"b)
i=0
for all a, b € K. In particular, as Sq° is the identity element then x = x? for all x homogeneous of
degree 0. In other words, the degree 0 elements of an unstable algebra form a Boolean algebra. If
we no longer require the product structure, keeping only the instability condition of the Steenrod
action, we get the notion of an unstable module. Denote by Z" the category of unstable algebras,
and by % the category of unstable modules. The Cartan formula on the tensor product M ® N of
two unstable modules define another unstable one, making % a symmetric monoidal category.
For an unstable module M, we write S* (M) for the symmetric power of M. This is an algebra but
does not satisfy the Cartan formula. Folowing [10], we define
S* (M)
(SqMx—x2)’
to get a functor U : %4 — A&, which is left adjoint to the forgetful functor £ — %. The importance
of the categories % and % is justified by the unstable Adams spectral sequence, introduced by
Massey and Peterson in [6], generalized by Bousfield and Curtis in [1], and generalized further
by Bousfield and Kan in [3]. In general, the unstable Adams spectral sequence for a topological
space X has the form

UM) =

Ey' =Ext%, (H* (X),H* (8") = 75— (X2).
However, if the cohomology of the space X is of the form U (M) for some unstable module M,
then the derived functor Ext in the nonabelian category £ can be computed as Ext-groups in the
category %:
Ext’, (H* (X),H* (S")) 2 Ext}, (M, Z'F,),
where XIF, = H* (S t ) So, in these cases, we write the unstable Adams spectral sequence for X as:
Ey' =Ext), (M,2'F2) = n5—, (X2).

We will be discussing the unstable Adams spectral sequence for the stable special orthog-
onal group SO and the stable unitary group U. As H* (SO) = U (H* ®RP*)) and H* (U) =
U (H* (£(CPY))), the spectral sequences have the following form:

Ey' = Ext), (H*RP®),X'F,) = 7m,-,(S0,),
Ey' = BxtS, (H* (Z(CPY)),2'F2) = 75 (02).
Recall that H* (RP°) is the polynomial algebra [F, [¢] on one generator of degree 1 and
H* (2(CPY)) = ZF, [v]

where v is of degree 2 and the Steenrod action is determined by:
n
S k,n_ n+k,
dtu (k) ’

SqZkvn — (Z) l}”+k.

Let a (i) be the number of 1’s in the dyadic expansion of i and filter H* (RP*) and H* (£ (CP$°))by:
R, = {ud | a(d) < n},
Cn={zv?| a(d) < n}.

In [2], the authors examine the Postnikov tower of SO and get a spectral sequence:

Eé” = PExt;, (CC" ,Zt[Fz) = ns—r(ﬁz)
n=1 n-1
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A similar reasoning is followed for SO:

Eg't = PExt, (RRn ,Zt[Fz) S~ [S/O\z)
n=1 n—-1

Moreover, the authors show that these new spectral sequences can be constructed algebraically

and they hope to identify these spectral sequences to the unstable Adams spectral sequences for

U and SO respectively. The first step of the identification is the comparison of the E, terms.

Conjecture 1 (Bousfield’s splitting conjecture). There are isomorphisms:

R _
@Ext%l( - Zt[Fz)EExtﬁ,l(H*([RPoo),Z”ﬂEg),

n=1 Rn—l’
P ExtS, ( CC”I ,Zt[Fg) = ExtS, (H* (Z(CPY)),2'F2).
nx=1 n-—

Mahowald suggests that the spectral sequences constructed in [2] can be demystified by taking
the destabilization of the stable Adams resolutions of the connective so and u spectra. Following
Mahowald’s suggestions, in [5] Kathryn Lesh constructs other spectral sequences:

R _
Ey' = (DExt;, ( L ,Zt[Fz) = 715-¢(S02),
n=1 Rn

Ey' = @Ext%l(ccn ,zf[FZ) = 15—, (02)

n=1 n-1
Lesh also conjectures that these are other models for the unstable Adams spectral sequences of
SOand U.
In this paper, we focus on the Bousfield splitting conjecture and get the following result.

Theorem 2 (Corollaries 17 and 41). Conjecture 1 holds if either s< 1 or s = [t/2].

We will verify Conjecture 1 by computing both sides of the isomorphims. The key observation
is that the Ext-groups appearing in this conjecture are F,—vector spaces of finite dimension.
Therefore, in order to verify these isomorphisms, we only need to count the dimension of these
vector spaces.

2. Unstable Modules

This section provides some basis facts of the category % of unstable modules used throughout
the present paper. We refer to [9] for a thorough treatment of unstable modules.

2.1. Projective unstable modules

Denote by 7, the category of F,—vector spaces. The functor F,, : % — ¥,, M — M" is repre-
sentable, and we denote by F(n) the representing object. As the functor F;, is exact, F(n) is a pro-
jective unstable module. For all unstable modules M, there is an epimorphism

P Fn)— M.

xeM",
n=0

Therefore, the F(n)’s, n = 0 form a system of projective generators for the category % of unstable
modules.

Definition 3. For a set X of nonnegative integers, denote by F (X) the direct sum of F(n),n € X.

Remark 4. As a morphism F (a) — F (b) is determined by a Steenrod operation of degree a — b,
if X, Y are two sets of nonnegative integers of cardinal m and n, respectively, then we represent a
morphism ¢ : F (X) — F(Y) by a matrix M € Maty, , ().
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2.2. The module F (1) and the dyadic filtration

It is straightforward from the definition that F(n) has the following description:
2o

(Sq'z71|1is admissible and e (1) > n)’

Hereby, we denote the generator 2”1 of F(n) by 1,,.

From this description of F(n), we can identify F (1) as the submodule of H* (RP™) generated
by the variable u, that is F (1) = F» {u, u?, u?,...) and

F(n)=

k .
w2 ifp=2k
k k .
Sq"u? =4 u? ifn=0,
0 otherwise.

We can use the module F (1) to describe the composition series of the dyadic filtration on
H* (RP*) and H* (£ (CPS°)). Recall from the introduction that for all n = 1, we have

Ry:={u’| a(d) < n}.

Note that R; = F (1). Moreover, the morphism

) mult

Ry ® R, — H* (RP®) @ H* (RP*® H* (RP™)

is surjective onto Rp,+5, for all m, n = 1. Denote by A" the n-th exterior power functor, then the
following result is straightforward.
Lemmab5. The epimorphism F (1)®" — R,, induces an isomorphism of unstable modules:

Ry

n =
AT (F(1) R

n-1
foralln=1.

There is a clean way to describe the dyadic filtration of H* (X (CP°)) using that of H* (RP*).
To this end, we will need some endofunctors of the category % : the suspension functor X and the
doubling functor ®.

The suspension functor X : 2 — 9% is easy to describe. What XM is to the unstable module M
is what H* (ZX) is to H* (X), that is

M ifn=1,

=M ={ .
{0} ifn=0,

and the Steenrod action is defined by
Sq"Zx=28q"x.

The functor X is exact and admits a left adjoint Q, called the loop functor of unstable modules.
The loop functor Q is right exact, and we denote by Q the s—th left derived functor of Q.

To describe the doubling functor @ : % — 9%, recall that the Steenrod operations represent
the Frobenius twist of an unstable algebra. Therefore, we can use the Steenrod action to define
the Frobenius twist of an unstable module as follows. For an unstable module M, let Sqq be the
operator that associates an element x with Sg'*'x. The operator Sqy defines a map M — M.
However, this map is not of degree 0. For this reason, we introduce the functor ® : % — %,
associating an unstable module M with ®M, such that:

MF ifn =2k,
{0} otherwise,

(‘DM)"={
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and the Steenrod action is defined by

®Sq*x ifn=2k,

Sq"ox = q )

{0} otherwise.
Now, we can represent the operator Sqg as the natural transformation A : ® — Id, sending each
unstable module M to the morphism

/IM :OM — M,
Ox— Sqox.
It turns out that the kernel, as well as the cokernel of 1,; can be determined using X and Q.

Proposition 6 ([8, Proposition 2.4],[9, Proposition 1.7.3]). Let M be an unstable module. Then
QM = {0} for all s > 1. Moreover, Q1 M and QM fit in the following natural exact sequence:

0— =0 M — oM 2L M2 soM —0,
where oy is the unit of the adjunction (Q 1 Z).
With the help of Z and @, we can write:
H* (2 (CPY)) = ZOH* (RP™)
and
Ch={Zv?|a(d) s n}=2® (R, 8F).
It follows from Lemma 5 that we have:

Lemma 7. There are isomorphisms of unstable modules:

Cn

ZOAT (F(1) — C

n-1
foralln=1.

2.3. The loop functor of unstable modules

Now, we compute the loop functor QQ on H* (RP*) and A" (F (1)) forall n>1.

Proposition 8. We have an isomorphism of unstable modules:
QH" (RP®) = ®H" (RP™).

Proof. Recall that H* (RP*°) is the polynomial algebra F, [u] on one generator u of degree 1.
Define an [F,—linear transformation « : F, [u] — Z®F; [u] by:

Souk ifn=2k+1,

a(u")= )

0 otherwise.

Because of the formulae
SqFun = (P u?mt2n if k=2m,
0 otherwise,

So(Mumt ifk=2m,
0 otherwise,
then «a is also a morphism over the Steenrod algebra. It is clear that a is surjective and the

sequence

Ty
0 — OF, [u] —2 F, (1] & SOF, [u] — 0

is exact. Therefore, the conclusion follows from Proposition 6. O
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Corollary 9. We have an isomorphism of unstable modules:
QH* (RP™®) = ®H* (RP™).
Proof. It follows from the fact that H* (RP*°) = H* (RP*) & F, and QF, = {0}. O

Similarly, we have:
Proposition 10. We have an isomorphism of unstable modules QR = ®R,,_; foralln = 1.

Corollary 11. We have an isomorphism of unstable modules QA" (F (1)) = OAL(F (1) for all
n=1.

2.4. Brown-Gitler modules

For an [F,—vector space M, denote by Mt the linear dual Homy, (M, F3). The functor J" : % —
¥,, M — M™* from the category % of unstable modules to the category of F—vector spaces
is representable for all natural numbers 7 (see [9, Chapter 2]). Denote by J(n) the representing
object. As the functor J" is exact, J(n) in an injective unstable module for all integers n = 0. It is
cogenerated in an unstable way by an element 1, of degree n, that is,

{0} ifk>n,

JW* =y i) if k =n,
F2(0;|Sq" is admissible of degree n—k,e(Sq') <k) ifk<n,

where Sq'0; = 1,,. As
Homy, (J(n), ] (m)) = J(n)*,

a morphism from J(n) to J (m) is determined by a Steenrod operation . Follows [9], we denote
such morphism by 8. The composition law is

(sw)o(e0) = (0Cw).
For all unstable modules M, the morphism

M— [] Jm

xeM™,
n=0

is injective. It follows that the J(n)’s form a system of injective cogenerators for the category %.

3. Injective resolutions and the conjecture

In [7], the author develops a new technique to construct the minimal injective resolution of Z’F,.
In this section, we will use these constructions to verify Conjecture 1 for s = [£/2].

Recall that the squaring of the Bockstein operation Sq! is trivial. Therefore, the Bockstein
operation Sq' defines the following complex:

Definition 12. The sequence

oSqt
(.sqzk) J4k-1) (.sql,.sq%)

«Sq
. 2
J2k)

1 sl sl
J (4k) J@ak-2) 20 jak-3) 29

is called the Bockstein complex of Brown-Gitler modules.
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Here the same matrix notation as for direct sums of free modules is used for morphisms
between direct sum of Brown-Gitler modules. We write the Bockstein complex cohomologically
as (B kg *. Bk~ 381"“)kzl, where
xr_)J@m-1eJj2Zm) ifk=4m-1,

J(k) otherwise.

Lemma 13 ([7, Proposition 7.8]). The Bockstein complex is exact.

It turns out that the Bockstein complex plays an important role in the minimal injective
resolution of X1F,.

Theorem 14 ([7, Proposition 7.8]). For all integers t = 1, the injective dimension of 'F; is t — 1.
Moreover, if[Ik, 6") t—1>k=0 1S the minimal injective resolution of 2'Fy, then each term I¥ is a finite
direct sum of Brown—Gitler modules and for s = [t/2], we have:

="
Corollary 15. Forallintegerst=1andt—1= s = [t/2], we have:
F, ift—s=3(4),

ExtS, (H* (RP®),2'F,) =
X%( ( ) 2) {{O} otherwise,

{[Fz ift—s=3@4)anda(t—s)=n,

K Rn t _
Ext;, ( > [Fz) = .
R {0} otherwise.

n—-1

Proof. Denote H* (RP™) by H. It follows from Theorem 14 that we have
Homy, (H, I*) = Homy, (H,28°")

{Hf—&ﬂ o S5 ifr—s=3),

Hi-st otherwise,

~

N {[F;’Z if - s=3(4),
F, otherwise,
and
Homy, (H,0%) = Homy, (H, ")
(9 :F —F2 ifr-s=0(4),

1d
- 0 :Fp, —Fy ift—s=104),
Id :F, —F, ift—s=2(4),
0,0) : F§2 — F, ifr—s=3(4).

It follows that we have
~ F if t—s=3(4),
BxtS, (° (RP®), £'Fy) =4 2 (79530
{0} otherwise.

Now, as R,/ R,_1 = A" (F (1)), we have:

Homg, (RR”I : 15) = Homy, (A" (F (1), %)
e
_ AT E@)ste A Fa)EE i r-s=30),
lAr@E )t otherwise,

F, ifa(t—s)=mn,
F, ifa(t—s+1)=n,andt-s=3(4),

0 otherwise.

n
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and

Homy, (H,0%) = Homy, (H, )
Id:Fp, —»Fy ift—-s=04), a(t—s) =n,
Id:Fp, —»Fy, ift—-s=24), a(t—s)=n,
0 otherwise.

n

Similarly, we have:
Corollary 16. Forallintegerst=1andt—1= s = [t/2], we have:
Fo ift—s=1(2),

Ext}, (H* (2 (CP)),2F,) =
X%( (( +)) 2) {{O} otherwise,

Ext%[(ccn s )_{[Fz ift—-s=1Q2) anda(t—-s—1)=n,

We can now make the following conclusion.

n—-1 {0} otherwise.

Corollary 17. Forallintegerst=1andt—1= s=[t/2], we have:

@Extﬁzl( B Zt[Fz)SExtﬁll (H* (RP®),2'F,),

n=1 Ry ,
@Extﬁk( Cn ,Zt[Fg)EExtik (H* (Z(CPP)),2'F2).
n=1 Cn-1

4. Projective resolutions and the conjecture

In this section, we study the minimal projective resolution of the objects of interest and provide
some other computations supporting Conjecture 1, namely the computations of Hom and Ext!
groups.

4.1. Minimal projective resolutions

We recall the definition of the minimal projective resolution of an unstable module and some
basic properties.

Definition 18. Let M be an unstable module. A projective resolution (Py,0k)=o of M is called
minimal if Py is the projective cover of M, Py is the projective cover of Ker (Py — M), and Py. is that
of Ker (0x—1) for all integers k = 2.

Remark 19. The projective cover of a given module is unique up to isomorphisms so it follows
from standard argument that two minimal projective resolutions of the same unstable module
are isomorphic.

Recall that an unstable module M is of finite type if M" is an F,—vector space of finite
dimension for all n = 0.

Lemma 20. Let M be an unstable module of finite type. Suppose that the sequence
PPy ~M—=0

is exact where Py and P, are projective unstable modules. Then, Py is the projective cover of M if
and only if for all integers n = 0, there are no morphisms ¢ : F(n) — Py and v : Py — F(n) such that
Wodod is an isomorphism.
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Proof. Suppose that Py is the projective cover of M, then Py is a direct sum of free unstable
modules F(m). Assume that there are morphisms ¢ : F(n) — P; and v : Py — F(n) such that
wodo ¢ is an isomorphism. Then, it follows that v is surjective. So ¥ has a section, called .
Therefore, there is an exact sequence

Coker (¢p) — Coker () — M — 0.

On the one hand, Coker (u_/) is a projective unstable module. On the other hand, as M is of finite
type, then the number of summands F(n) of Py is finite. Therefore, the number of summands
F(n) of Coker () is strictly less than that of Py. It follows that there is no surjection from Coker ()
to M, whence a contradiction.

Now, if Py is not the projective cover of M, then there is an epimorphism from P, to the
projective cover P of M with nontrivial kernel. Let F(n) be a direct summand of Py lying in the
kernel of the projection Py — P, then the composition

P2 pP—Fn
is surjective. It follows that P; contains a direct summand F(n) such that the composition
F(n) — Py % Py— F(n)

is an isomorphism. The conclusion follows. O

Therefore, for unstable modules of finite type, we get the following simple characterization of
minimal projective resolutions.

Proposition 21. Let M be an unstable module of finite type. A projective resolution (Py,0k) k=0 Of
M is minimal if and only if for all integers n, k = 0, there are no morphisms ¢ : F(n) — Py, and
W : Py — F(n) such thaty o0y o ¢ is an isomorphism.

Corollary 22. Let M be an unstable module of finite type and let (Py,0k) =0 be the minimal
projective resolution of M. Then, there are isomorphisms

Ext}, (M, Z"F,) = Homg, (Pg, £"F>)
of Fo—vector spaces for all integers s = 0.

Proof. Note that
[Fg if k= n,
Homg, (F (k),2Z"F,) =
( 2) {0} otherwise.
Following Proposition 21, if (Pk ,0k) k=0 18 the minimal projective resolution of M, then
Homg, (0°,2"F,) = 0.

The conclusion follows. O

Corollary 23. Let M be an unstable module of finite type such that Q1M = {0}. If (Pk,0k) k=0 IS
the minimal projective resolution of M, then (A Py, Q01 =o IS the minimal projective resolution of
QM.

Proof. From [8, Lemma 2.8], (QP,Q0k) 1> is a projective resolution of QM because QM = 0.
Due to Proposition 21, this resolution is minimal. O
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4.2. Pseudo-hyperresolutions

In this paragraph, we use pseudo-hyperresolutions to construct projective resolutions of the
objects of interest: H* RP*), S®H* (RP*®), A" (F (1)) and S®A" (F (1)) for all n = 1. Our aim is
modest: we only compute the first and second terms of the minimal projective resolutions of
these objects for they give access to the computations of Hom and Ext! groups. Because of the
following lemma, if we can verify Conjecture 1 for RP*°, then the result for CP* also holds. For
this reason, we focus only on RP*°.

Lemma 24. Ifthe isomorphism

@Ext%( .z [Fz) Ext}, (H* (RP®),2'F,),
-1

n=1

holds, then so does Conjecture 1.
Proof. It follows from [8, Lemma 3.4] that we have:

Ext}, (ZQH" (RP®),2'F,) = Ext, (QH* (RP®), =7 'F,) o ExtS, ! (QOH* (RP™),27'F,)
= Ext, (H* (RP™),2 [Fg)eaExt%ll(CDH ([RP‘”) 2'Fy),

B 1[F)

SIF, | 2 ExtS, [Q Rn S, | @ BxeS) Qrb
2| = Y R 2 ng R

n-1

R
Exts, (ZQR—",

n-1 n-1

R
,z‘ufz) @ Bxt}, ! ((DR E

n-1

~ s R t
:EX‘[% R »z IFZ .

n-1
Note that by Corollary 9 and Proposition 10 together with the right exactness of Q we have
QH* (RP®) = OH* (RP™)
o Bn . OR
Rn—l cI)Rn—l
Now, it follows from Lemma 7 that we have

PR, _ Cy
(DRn—l B Cn—l

Then, thanks to Corollary 23, we have an isomorphism

@D Exts, (

n=1

) = Ext), (PH* (RP™),Z'F).
The conclusion follows. U

Thanks to this lemma, it suffices to study the minimal projective resolution of H* (RP®) and
A" (F (1)) for all n= 1. Note that A} (F(1)) = F(1) is projective, so we only need to study the cases
n=2.

Observe that if SqI is an admissible Steenrod operation, then oSqI : J(m) — J (n) is nontrivial
if and only if the excess of Sq’ is less than or equal to n. It follows that the equality ea = of :
J (m) — J (n) implies that @ — B is a sum of admissible operations of excess greater than n. That is
what we use to verify the following technical computation of Steenrod operations.

Lemma 25. Let Sq®Sq” be admissible of excess n. Then, every admissible term in Sq®Sq” —
Sq“tP=1Sq™ is of excess strictly greater than n.
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Proof. Consider the following commutative diagram:

Z'quaSqu
>J2a+2b+2n—-1) ——2J(2n-1)

l .quuSqu l

J2a+2b+2n) ——— = J(2n)

.Squ+h+nL l.sqn
-Sq“th

Ja+b+n) J(n)

Notethata—b=nthena=b+nand a+ b+ n=2b+2n. Therefore, we have
Sqa+b+n8qa+b—n — quaSqZh.

Hence, we have

(.Sqn)o(.squﬂ)—n) (.Sqa+b+n) _ (.Sqn)o(.SqZuSqu)

— (.Sqasqb)o (.Sqa+b+n).
As #Sq*“*P*" is surjective, we have:
(.Sqasqb) _ (.Sqn)o(.schb—n) _ .(Sqa+h—nsqn)

whence the conclusion. i

Lemma 26. Ifa,b are two odd numbers such that a < 2b, then

(ar2=D12 ([ _2; _»
Sq'sq’= 1 (a—4i—2

)Sqa+h—2i—lsq2i+l‘
i=0

Proof. Let m > a+ b be an integer and let n = 2m + b and 2k = n + a. Consider the following

commutative diagram:

oSq oSq

J(2k) J(n) J2zm)
.qul L'Sqm
k 0
T s s o

Note that, we have:
@) D(+5q?) = (+8¢°) =0;
(ii) ®(¢Sq?)od(2Sq%) =@ (+Sq*Sq").
The conclusion follows. U

Lemma 27. Let M be a connected unstable module, that is M° = {0}. If Ay : OM — M, x — Sqox
is surjective then M = {0}.

Proof. As ®M is concentrated in even degree and Ay, : ®M — M is surjective, then M is also
concentrated in even degree. A simple induction on k = 1 shows that M is concentrated in degree
divisible by 2k Hence, M™ = {0} for all n = 1. Moreover, as M is connected, we have M° = {0}.
Then, we have M = {0}. O

The following result is a mean to construct a projective resolution for M from that of QM.
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Corollary 28. Let M be a connected unstable module such that Q1 M = {0}. Let & be a complex

a, 0, On
P, Py 2N Py > M 1)

in which each P;, 0 < i < n, is projective. If Q2 is exact, then so is 2.

Proof. Note that the functors @ and X are exact. Then, the long exact sequence associated with
the following short exact sequence of complexes

0-P#—-P —-3202»—0

yields the triviality of the homology groups H*(2?) for all n—1 = s = 1. Moreover, we get the
following commutative diagram

®HY () o oM

l |

HO (22) . M
SH® Q%) s A SOM

where both columns are short exact sequences. Now, it follows from the Snake lemma that
both Ker(f) and Coker(f) are connected. Moreover, by assumption Q& is exact so Q(f) is
an isomorphism. Therefore, we get the surjectivity of ®Ker(f) — Ker(f) and ® Coker(f) —
Coker (). It follows from Lemma 27 that f is an isomorphism whence the conclusion. g

Remark 29. Note that we have Q®F (n) = Z®F (n—1). Moreover, Q;®F (n) = {0}. Therefore, we
can use Lemma 28 to construct projective resolutions of ®F (n) by induction on n. We start with
the case n=1.

Lemma 30. The following sequence is exact

1 1 1 1
e F Y F-) 2 S E @) 2 F) — oF (1) — 0
Proof. Recall that the module F (n) has an additive basis
{Sq" 1 | I is admissible and ex (I) < n}

and the morphism Sq' : F(n) — F(n—1) sends Sq’1, to Sq'Sq'1,_,.If I = (I;,1) then Sq’Sq' =
0. Otherwise, if I = (i, i»,...,ix) is admissible of excess less than or equal to n and i} = 2 then
Sq’ Sql is admissible of excess less than or equal to n — 1. Therefore, the kernel of Sq1 :F(n) —
F (n—-1) has an additive basis

{Sqlln |I=(1,i2,..., ik 1) is admissible and ex (I) < n}
This is also an additive basis of the image of the morphism Sql :F(n+1) — F(n). Therefore, the
following complex is acyclic
1 1 1 1
e F) 2 -3 5 o) 3T By
Because the image of Sql :F(2) — F(1) is ®F (1), then we get the desired conclusion. O

The sequence

Sq' Sq' Sq' Sq'
i F L Fm-12 L 2 FR) 2L FR) - OF (1) — 0

is the minimal projective resolution of ®F (1). We now use pseudo-hyperresolutions to give access
to projective resolutions of ®F (n) for n = 2. For this, we introduce the following notations.
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Definition 31. Let P (1) = F(4), Q(1) = F(3). For n =2, define:
Ap,={4n+1,4n+5,...,8n—-"7},

B,={4n,4n+2,...,8n—4}, D,={4n-1},
Ch={k+2lkeX,_1}, Ep={k+2|keQu1},
P,=A,UuB,UC,, Qn=DpUEy,
and for T € {A,B,C,D,E,P,Q}, let T(n) = F (Ty). We also write:
an:=(8q%84°,...,S¢*"°) : A(n) — D(n),
dy, = diag(Sq*",Sq*"*%,...,8q*"*) : A(n) — E(n),
Tn:=(Sq', Sq%,...,Sq*" 1) : Q(n) — F(2n).
Lemma 32. Foralln =1, there exists an exact sequence
P(n) 25 Q) 25 F2n) — ®F(n) — 0 @)

such that o, = Sq' and for n = 2, we have

T2n-1 *1
o,=| a, d, |:Bn)e An)eC(n)— D(n)® E(n).
*2 Op-1

Proof. We proceed by induction on n. The case n = 1 holds by Remark 29. The induction
argument goes as follows. Assume that the result holds for n < m. We now consider the case
n=m+ 1. The sequence

0— ®F (q) =% F(q) F(q-1)~0

is exact by Proposition 6. Therefore, the following sequence

1g—ZXig-1

12g—S8q714
) ———

F(2q F(q)—ZxF(q-1)—0

provides the first and the second term in the minimal projective resolution of £F (g — 1) for all
integers g = 1. If X is a set of integers, and s € Z, then we write s+ X = {s+ k|k € X }. Consider the
following diagram:

F(+ Bm+1)
T2m+1
F(=1+Apms) = o Fam+2)

dm+l l Sq2m+1

| |

2P (m) S ZQ(m) — 2F(2m)

Denote
P:=F(Q+Bu+1)®F(-1+An+1)®F(1+Py).
It follows from [7, Corollary 4.8] that there exists a morphism
0:F(1+Py)—F(An+2)
such that the sequence

Tom+1 0
am+1 dm+1 (qumﬂ T )

p In L Fan+2)® F(1+Qpm) — L F2m+1) — 0 @3)
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is exact. Remark that QP (m +1) = P and QQ,,+1 = F(4n+2) @ F (1 + Q). Now, note that

Tom+1 = (8", S¢°,...,Sq*™).

It follows from Lemma 26 that there exists 6 : F (1 + By;+1) — F (1 + Q) such that

Sq2m+1 °T2m+1 =Tmo0.
Therefore, the sequence
Tom+1 O
Am+1 dm+1)
Om Tm+1
P(m+1) Qim+1)— F(2m+2)—0
is an exact sequence after Corollary 3. g

Remark 33. A simple induction on n shows that all coefficients in the matrix form of ¢, are
Steenrod squares.

Lemma 34. Let n =1 be an odd integer, then we can write Sq" as a sum of products Sq*Sq*"*!,
where a> 0, ifand only if n+ 1 is not a power of 2.

Proof. Remark that if 7+ 1 is not a power of 2 then 7 is of the form 2¢ k+2~! — 1 for some integers
¢ =2 and k = 1. We will now show that:

/-1
¢ -1_ ¢ -1_ 0 _os Cor -1, 95
s=1
In fact, for1 < s< ¢ -1, we have

Sq

228 g ks 22! (2”(k— D+20 4252
20-25-2¢

)Sq2f+2[1—l—tsqt.
t=max(2¢~1-25+142,0)
On the other hand, we have
207 425—2-¢) (2071425 2
20—2s—2¢ | | 2¢-25"1-2¢

forall2/~1 —25+2<r<2/"1-251 and

20k-2)
20-1 =1

Then, Equation 4 follows. The remaining conclusion follows from the fact that

2b o
1+2k-2p]

foralll<b. O

Proposition 35 (Compare with [4, Proposition 6.2.1]). The following sequence provides the first
two terms of the minimal projective resolution of ®F (n) forn = 1:

@ Flen+29-1) % Fen L oFm —o.
1=d<log,(n)

1

where w (1,,,pa_,) = SG* V12n, and p (12,) = ®1,,.

Proof. It follows from Lemma 32 that {Sq**"11,, | 1 < k < n} is a set of generators of Ker (p). By

Lemma 34, {Sq%'~'1,, | 1 < d <log, (n)} form a minimal set of generators of Ker (p), whence the
conclusion. O
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The first two terms of the minimal projective resolution of ®F (n) can also be found in [4,
Proposition 6.2.1]. However, in [4], instead of w, the morphism from the second to the first
term of the resolution sends 1,,_,4_; t0 Qg—112,. In this paper, we choose qud‘l instead of the
Milnor operation Q,-; because it gives us the following result, which can also be found in [11,
Theorem 5].

Corollary 36. Forevery odd number n, the operation Sq" is equal to a sum of products of the form
Sqn—2d+1 qud—l _

Similarly, we get the following result.

Proposition 37. The following sequence provides the first two terms of the minimal projective
resolution of A" (F(1)) forn=1:

@ Fl2n+27-1) S F("-1)—A"FQ) 0.
0=d=<n-2
whered(1n,pa_,) = Sq% 1on_1.
In what follows, denote by (L, dx) ko the minimal projective resolution of H* (RP).

Lemma 38. The first term By of the minimal projective resolution of H* (RP®) is isomorphic to
the direct sum of F(2" —1) withn = 1.

Proof. It is clear that the minimal set of </ —generators of H* (RP*®) is {u?"~! | n = 1}. The
conclusion follows. O

Proposition 39. There exists a projective unstable module Q such that

Tr=Qe (Z@L(%g_;(z”udﬂ))).

Proof. Denote by ¢ the projection

Po=@PF(2"-1) — H* (RP®)
1<n
Ion_1 ML |
and by w,, 4 the element:

n-1 d+1
2 qu

24 24
Wna:=Sq° 1n_1+S8q Sq° 1yan1_y

forall2 < nand 0 = d < n—2. It is clear that (p(wn,d) =0. As qud is indecomposable, w;, 4
is o/ —indecomposable. It follows that w, ; must be hit by the generator of a free module in a
minimal resolution, whence the conclusion. O

Corollary 40. The following sequence provides the first two terms of the minimal projective
resolution of H* (RP°):

EB( a5 F(2”+2d—1)) 2 @D F(2"-1)— 0" (RP®) —0.
2=n\0<d<n-2 1<n
where

n-1 2d+1

d d
6(12n+2d_1)=5612 lzn_1+5q2 ---Sq qu lyd+1_q-

Proof. We will show that Q = {0}. Let I be a set of integers such that
Q=EPF (k).

kel
From the connectivity of the kernel of the map
P F(2"-1)—H" (RP®),

1=n
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the set I cannot contain 0, 1,2, 3. By constructing the pseudo-hyperresolution for ®H* (RP*), it
is easy to see that

{n-1|nell={2n|nel}.
Therefore, if I is not empty, then it must contain 1, whence a contradiction. It follows that I = @,
whence Q = {0}. O

Corollary 41. Conjecture 1 holds for s < 1.

Proof. Note that we need to verify the following isomorphisms for s < 1:
R 1%

P Ext;, (Rn: ,zf[FZ) = Ext), (H* (RP™),2'F,),

n=1

As Z'F, is a simple object, the Ext-group Ext;, (M,%'F,) is isomorphic to the Hom-group
Homgy, (PS,ZI[Fz) where P; is the s—th term of the minimal projective resolution of the unsta-
ble module M. On the one hand, Proposition 37 provides the first two terms of the minimal pro-
jective resolution of A" (F (1)) = R,/ R for n = 1. On the other hand, Corollary 40 provides the
first two terms of the minimal projective resolution of H* (RP™). Then, the conclusion follows
from counting the dimension of both sides of the isomorphisms. 0
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