Analyse numérique
ϕ-FEM for the heat equation: optimal convergence on unfitted meshes in space
Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1699-1710

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the ϕ-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in l 2 (H 1 ) and l (L 2 ) norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of ϕ-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.497

Duprez, Michel 1 ; Lleras, Vanessa 2 ; Lozinski, Alexei 3 ; Vuillemot, Killian 1, 2

1 MIMESIS team, Inria Nancy - Grand Est, MLMS team, Université de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg, France
2 IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France
3 Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray, 25030 Besançon Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G11_1699_0,
     author = {Duprez, Michel and Lleras, Vanessa and Lozinski, Alexei and Vuillemot, Killian},
     title = {$\phi ${-FEM} for the heat equation: optimal convergence on unfitted meshes in space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1699--1710},
     year = {2023},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     number = {G11},
     doi = {10.5802/crmath.497},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/crmath.497/}
}
TY  - JOUR
AU  - Duprez, Michel
AU  - Lleras, Vanessa
AU  - Lozinski, Alexei
AU  - Vuillemot, Killian
TI  - $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1699
EP  - 1710
VL  - 361
IS  - G11
PB  - Académie des sciences, Paris
UR  - https://www.numdam.org/articles/10.5802/crmath.497/
DO  - 10.5802/crmath.497
LA  - en
ID  - CRMATH_2023__361_G11_1699_0
ER  - 
%0 Journal Article
%A Duprez, Michel
%A Lleras, Vanessa
%A Lozinski, Alexei
%A Vuillemot, Killian
%T $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
%J Comptes Rendus. Mathématique
%D 2023
%P 1699-1710
%V 361
%N G11
%I Académie des sciences, Paris
%U https://www.numdam.org/articles/10.5802/crmath.497/
%R 10.5802/crmath.497
%G en
%F CRMATH_2023__361_G11_1699_0
Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei; Vuillemot, Killian. $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space. Comptes Rendus. Mathématique, Tome 361 (2023) no. G11, pp. 1699-1710. doi: 10.5802/crmath.497

[1] Alnæs, Martin; Blechta, Jan; Hake, Johan; Johansson, August; Kehlet, Benjamin; Logg, Anders; Richardson, Chris; Ring, Johannes; Rognes, Marie E.; Wells, Garth N. The FEniCS Project Version 1.5, Arch. Numer. Soft., Volume 3 (2015), 100 | DOI

[2] Annavarapu, Chandrasekhar; Hautefeuille, Martin; Dolbow, John E. A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Eng., Volume 225-228 (2012), pp. 44-54 | Zbl | MR | DOI

[3] Burman, Erik Ghost penalty, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 21-22, pp. 1217-1220 | DOI | MR | Numdam | Zbl

[4] Burman, Erik; Claus, Susanne; Hansbo, Peter; Larson, Mats G.; Massing, André CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng., Volume 104 (2015) no. 7, pp. 472-501 | DOI | MR | Zbl

[5] Cotin, S.; Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei; Vuillemot, K. ϕ-FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer, Partition of Unity Methods (Wiley Series in Computational Mechanics), John Wiley & Sons, 2022

[6] Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei A new ϕ-FEM approach for problems with natural boundary conditions, Numer. Methods Partial Differ. Equations, Volume 39 (2023) no. 1, pp. 281-303 | DOI | MR

[7] Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei ϕ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 3, pp. 1111-1142 | DOI | MR | Zbl

[8] Duprez, Michel; Lozinski, Alexei ϕ-FEM: a finite element method on domains defined by level-sets, SIAM J. Numer. Anal., Volume 58 (2020) no. 2, pp. 1008-1028 | DOI | MR | Zbl

[9] Evans, Lawrence C. Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010

[10] Glowinski, Roland; Pan, Tsorng-Whay; Periaux, Jacques A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., Volume 111 (1994) no. 3-4, pp. 283-303 | DOI | MR | Zbl

[11] Main, Alex; Scovazzi, Guglielmo The shifted boundary method for embedded domain computations. I: Poisson and Stokes problems, J. Comput. Phys., Volume 372 (2018), pp. 972-995 | DOI | MR | Zbl

[12] McCorquodale, Peter; Colella, Phillip; Johansen, Hans A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. Comput. Phys., Volume 173 (2001) no. 2, pp. 620-635 | Zbl | DOI | MR

[13] Mittal, Rajat; Iaccarino, Gianluca Immersed boundary methods (Annual Review of Fluid Mechanics), Volume 37, Annual Reviews, 2005, pp. 239-261 | MR | Zbl

[14] Schwartz, Peter; Barad, Michael; Colella, Phillip; Ligocki, Terry A Cartesian grid embedded boundary method for the heat equation and Poisson’s equation in three dimensions, J. Comput. Phys., Volume 211 (2006) no. 2, pp. 531-550 | DOI | MR | Zbl

[15] Thomée, Vidar Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, 1997, x+302 pages | Zbl | DOI

Cité par Sources :