We prove the existence of a genus-zero complete maximal map with a prescribed singularity set and an arbitrary number of simple and complete ends. We also discuss the conditions under which this maximal map can be made into a complete maxface.
Révisé le :
Accepté le :
Publié le :
Keywords: complete maxface, maximal map, zero mean curvature surfaces
Kumar, Pradip 1 ; Mohanty, Sai Rasmi Ranjan 1
CC-BY 4.0
@article{CRMATH_2023__361_G10_1683_0,
author = {Kumar, Pradip and Mohanty, Sai Rasmi Ranjan},
title = {Genus {Zero} {Complete} {Maximal} {Maps} and {Maxfaces} with an {Arbitrary} {Number} of {Ends}},
journal = {Comptes Rendus. Math\'ematique},
pages = {1683--1690},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G10},
doi = {10.5802/crmath.525},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.525/}
}
TY - JOUR AU - Kumar, Pradip AU - Mohanty, Sai Rasmi Ranjan TI - Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends JO - Comptes Rendus. Mathématique PY - 2023 SP - 1683 EP - 1690 VL - 361 IS - G10 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.525/ DO - 10.5802/crmath.525 LA - en ID - CRMATH_2023__361_G10_1683_0 ER -
%0 Journal Article %A Kumar, Pradip %A Mohanty, Sai Rasmi Ranjan %T Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends %J Comptes Rendus. Mathématique %D 2023 %P 1683-1690 %V 361 %N G10 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.525/ %R 10.5802/crmath.525 %G en %F CRMATH_2023__361_G10_1683_0
Kumar, Pradip; Mohanty, Sai Rasmi Ranjan. Genus Zero Complete Maximal Maps and Maxfaces with an Arbitrary Number of Ends. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1683-1690. doi: 10.5802/crmath.525
[1] Generalized maximal surfaces in Lorentz–Minkowski space , Math. Proc. Camb. Philos. Soc., Volume 111 (1992) no. 3, pp. 515-524 | DOI | Zbl | MR
[2] New Maximal Surfaces in Minkowski 3-Space with Arbitrary Genus and Their Cousins in de Sitter 3-Space, Results Math., Volume 56 (2009) no. 1, p. 41 | DOI | MR | Zbl
[3] On analytic functions of constant modulus on a given contour, Ann. Math., Volume 14 (1912) no. 1-4, pp. 72-80 | DOI | MR
[4] Flux of simple ends of maximal surfaces in , Hokkaido Math. J., Volume 37 (2008) no. 3, pp. 561-610 | DOI | MR | Zbl
[5] The topology of complete minimal surfaces of finite total Gaussian curvature, Topology, Volume 22 (1983) no. 2, pp. 203-221 | DOI | MR | Zbl
[6] Prescribing singularities of maximal surfaces via a singular Björling representation formula, J. Geom. Phys., Volume 57 (2007) no. 11, pp. 2167-2177 | DOI | Zbl
[7] On the existence of spacelike constant mean curvature surfaces spanning two circular contours in Minkowski space, J. Geom. Phys., Volume 57 (2007) no. 11, pp. 2178-2186 | DOI | MR | Zbl
[8] Regularity of ends of zero mean curvature surfaces in , J. Math. Soc. Japan, Volume 74 (2022) no. 4, pp. 1295-1334 | DOI | MR | Zbl
[9] Old and New on the Schwarzian Derivative, Quasiconformal Mappings and Analysis: A Collection of Papers Honoring F.W. Gehring (Duren, Peter; Heinonen, Juha; Osgood, Brad; Palka, Bruce, eds.), Springer, 1998, pp. 275-308 | DOI | Zbl
[10] Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., Volume 35 (2006) no. 1, pp. 13-40 | DOI | MR | Zbl
[11] Complete minimal surfaces of finite total curvature, Mathematics and its Applications, 294, Kluwer Academic Publishers, 1994, viii+157 pages | DOI | MR
Cité par Sources :





