Let with mean value zero, and be polynomials in variables with real coefficients and . We prove that
where may depend on , and , but not otherwise on the coefficients of and .
The above result answers an open question posed in [13]. Additional boundedness results of similar nature are also obtained.
Accepté le :
Publié le :
Keywords: oscillatory integrals, singular integrals, Calderón–Zygmund kernels, Hardy spaces
Al-Qassem, Hussain 1 ; Cheng, Leslie 2 ; Pan, Yibiao 3
CC-BY 4.0
@article{CRMATH_2023__361_G10_1673_0,
author = {Al-Qassem, Hussain and Cheng, Leslie and Pan, Yibiao},
title = {On the boundedness of a family of oscillatory singular integrals},
journal = {Comptes Rendus. Math\'ematique},
pages = {1673--1681},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
number = {G10},
doi = {10.5802/crmath.523},
language = {en},
url = {https://www.numdam.org/articles/10.5802/crmath.523/}
}
TY - JOUR AU - Al-Qassem, Hussain AU - Cheng, Leslie AU - Pan, Yibiao TI - On the boundedness of a family of oscillatory singular integrals JO - Comptes Rendus. Mathématique PY - 2023 SP - 1673 EP - 1681 VL - 361 IS - G10 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.523/ DO - 10.5802/crmath.523 LA - en ID - CRMATH_2023__361_G10_1673_0 ER -
%0 Journal Article %A Al-Qassem, Hussain %A Cheng, Leslie %A Pan, Yibiao %T On the boundedness of a family of oscillatory singular integrals %J Comptes Rendus. Mathématique %D 2023 %P 1673-1681 %V 361 %N G10 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.523/ %R 10.5802/crmath.523 %G en %F CRMATH_2023__361_G10_1673_0
Al-Qassem, Hussain; Cheng, Leslie; Pan, Yibiao. On the boundedness of a family of oscillatory singular integrals. Comptes Rendus. Mathématique, Tome 361 (2023) no. G10, pp. 1673-1681. doi: 10.5802/crmath.523
[1] On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157 | Zbl | DOI | MR
[2] Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., Volume 83 (1977), pp. 569-645 | DOI | MR | Zbl
[3] Hardy spaces on spheres, Ph. D. Thesis, Washington University, St. Louis (1982)
[4] Inequalities for strongly singular convolution operators, Acta Math., Volume 124 (1970), pp. 9-36 | DOI | MR | Zbl
[5] An estimate for a family of oscillatory integrals, Stud. Math., Volume 154 (2003) no. 1, pp. 89-97 | DOI | Zbl
[6] Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Springer, 1973 | DOI
[7] Classical and Modern Fourier Analysis, Pearson/Prentice Hall, 2004
[8] Hilbert integrals, singular integrals, and Radon transforms I, Acta Math., Volume 157 (1986), pp. 99-157 | DOI | MR
[9] Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal., Volume 73 (1987), pp. 179-194 | DOI | MR | Zbl
[10] Beijing Lectures in Harmonic Analysis, Annals of Mathematics Studies, 112, Princeton University Press, 1986
[11] Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993
[12] Problems in harmonic analysis related to curvature, Bull. Am. Math. Soc., Volume 84 (1978), pp. 1239-1295 | DOI | MR | Zbl
[13] A note on singular oscillatory integrals with certain rational phases, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 363-370 | MR | Zbl
Cité par Sources :





