We explicitly compute the homotopy groups of the topological spaces , , and .
Nous calculons explicitement les groupes d'homotopie des espaces topologiques , et .
Accepted:
Published online:
@article{CRMATH_2019__357_8_686_0, author = {Schlichting, Marco}, title = {Symplectic and orthogonal {\protect\emph{K}-groups} of the integers}, journal = {Comptes Rendus. Math\'ematique}, pages = {686--690}, publisher = {Elsevier}, volume = {357}, number = {8}, year = {2019}, doi = {10.1016/j.crma.2019.08.001}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2019.08.001/} }
TY - JOUR AU - Schlichting, Marco TI - Symplectic and orthogonal K-groups of the integers JO - Comptes Rendus. Mathématique PY - 2019 SP - 686 EP - 690 VL - 357 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2019.08.001/ DO - 10.1016/j.crma.2019.08.001 LA - en ID - CRMATH_2019__357_8_686_0 ER -
Schlichting, Marco. Symplectic and orthogonal K-groups of the integers. Comptes Rendus. Mathématique, Volume 357 (2019) no. 8, pp. 686-690. doi : 10.1016/j.crma.2019.08.001. https://www.numdam.org/articles/10.1016/j.crma.2019.08.001/
[1] Triangular Witt groups. II. From usual to derived, Math. Z., Volume 236 (2001) no. 2, pp. 351-382
[2] Computations of K-theories of finite fields, Topology, Volume 15 (1976) no. 1, pp. 87-109
[3] Bott periodicity in topological, algebraic and Hermitian K-theory, Handbook of K-Theory, Vol. 1, 2, Springer, Berlin, 2005, pp. 111-137
[4] Symmetric Bilinear Forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 73, Springer-Verlag, New York, Heidelberg, 1973
[5] is the trivial group, Topology, Volume 39 (2000) no. 2, pp. 267-281
[6] The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes, Invent. Math., Volume 179 (2010) no. 2, pp. 349-433
[7] Hermitian K-theory, derived equivalences and Karoubi's fundamental theorem, J. Pure Appl. Algebra, Volume 221 (2017) no. 7, pp. 1729-1844
[8] Higher K-theory of forms I. From rings to exact categories, J. Inst. Math. Jussieu (2019) (in prees) | DOI
[9] M. Schlichting, Higher K-theory of forms II. From exact categories to chain complexes, in preparation.
[10] M. Schlichting, Higher K-theory of forms III. From chain complexes to derived categories, in preparation.
[11] M. Schlichting, Higher K-theory of forms for Dedekind domains, in preparation.
[12] Algebraic K-theory of rings of integers in local and global fields (Friedlander, E.M.; Grayson, D.R., eds.), Handbook of K-Theory, Vol. 1, Springer, Berlin, 2005, pp. 139-190
Cited by Sources:
☆ This work was partially funded by the Leverhulme Trust.