[Triangulations géométriques et flips]
We prove that for a given flat surface with conical singularities, any pair of geometric triangulations can be connected by a chain of flips.
Nous démontrons que, dans chaque surface plate à singularités coniques, deux triangulations géométriques peuvent être reliées par une séquence de flips.
Accepté le :
Publié le :
Tahar, Guillaume 1
@article{CRMATH_2019__357_7_620_0,
author = {Tahar, Guillaume},
title = {Geometric triangulations and flips},
journal = {Comptes Rendus. Math\'ematique},
pages = {620--623},
year = {2019},
publisher = {Elsevier},
volume = {357},
number = {7},
doi = {10.1016/j.crma.2019.07.001},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2019.07.001/}
}
TY - JOUR AU - Tahar, Guillaume TI - Geometric triangulations and flips JO - Comptes Rendus. Mathématique PY - 2019 SP - 620 EP - 623 VL - 357 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2019.07.001/ DO - 10.1016/j.crma.2019.07.001 LA - en ID - CRMATH_2019__357_7_620_0 ER -
Tahar, Guillaume. Geometric triangulations and flips. Comptes Rendus. Mathématique, Tome 357 (2019) no. 7, pp. 620-623. doi: 10.1016/j.crma.2019.07.001
[1] Strata of k-differentials, Algebraic Geom., Volume 6 (2019) no. 2, pp. 196-233
[2] Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146
[3] On triangulations of surfaces, Topol. Appl., Volume 40 (1991) no. 2, pp. 189-194
[4] Flat surfaces (Cartier, P.; Julia, B.; Moussa, P.; Vanhove, P., eds.), Frontiers in Number Theory, Physics, and Geometry, Springer, 2006, pp. 439-586
Cité par Sources :





