Partial differential equations
Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
[Existence d'ondes solitaires multiples avec distances relatives logarithmiques de Schrödinger non linéaires]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58

We construct 2-solitary wave solutions with logarithmic distance to the nonlinear Schrödinger equation,

itu+Δu+|u|p1u=0,tR,xRd,
in mass-subcritical cases 1<p<1+4d and mass-supercritical cases 1+4d<p<d+2d2, i.e. solutions u(t) satisfying
u(t)eiγ(t)k=12Q(xk(t))H10
and
|x1(t)x2(t)|2logt,ast+,
where Q is the ground state. The logarithmic distance is related to strong interactions between solitary waves.

In the integrable case (d=1 and p=3), the existence of such solutions is known by inverse scattering (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). The mass-critical case p=1+4d exhibits a specific behavior related to blow-up, previously studied in Y. Martel, P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).

On construit des solutions au problème de la propagation de deux ondes solitaires avec distance logarithmique de Schrödinger non linéaire,

itu+Δu+|u|p1u=0,tR,xRd,
dans le cas d'une masse souscritique 1<p<1+4d et d'une masse surcritique 1+4d<p<d+2d2, autrement dit, u(t), qui satisfait
u(t)eiγ(t)k=12Q(xk(t))H10
et
|x1(t)x2(t)|2log(t)quandt+,
Q est l'état fondamental. La distance logarithmique est liée à l'interaction forte entre ondes solitaires.

Dans le cas intégrable (d=1 et p=3), l'existence d'une telle solution est connue par la méthode dite d'inverse scaterring (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346 ; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). Le cas d'une masse critique p=1+4d introduit un comportement spécifique lié à l'explosion, qui a été étudié précédemment par Y. Martel et P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.012

Nguyễn, Tiến Vinh 1

1 CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
@article{CRMATH_2019__357_1_13_0,
     author = {Nguyễn, Tiến Vinh},
     title = {Existence of multi-solitary waves with logarithmic relative distances for the {NLS} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--58},
     year = {2019},
     publisher = {Elsevier},
     volume = {357},
     number = {1},
     doi = {10.1016/j.crma.2018.11.012},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2018.11.012/}
}
TY  - JOUR
AU  - Nguyễn, Tiến Vinh
TI  - Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 13
EP  - 58
VL  - 357
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2018.11.012/
DO  - 10.1016/j.crma.2018.11.012
LA  - en
ID  - CRMATH_2019__357_1_13_0
ER  - 
%0 Journal Article
%A Nguyễn, Tiến Vinh
%T Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
%J Comptes Rendus. Mathématique
%D 2019
%P 13-58
%V 357
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2018.11.012/
%R 10.1016/j.crma.2018.11.012
%G en
%F CRMATH_2019__357_1_13_0
Nguyễn, Tiến Vinh. Existence of multi-solitary waves with logarithmic relative distances for the NLS equation. Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58. doi: 10.1016/j.crma.2018.11.012

[1] Agmon, S. Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, USA, 1982

[2] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, New York University, New York, 2003

[3] Cazenave, T.; Weissler, F.B. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Anal., Volume 14 (1990) no. 10, pp. 807-836

[4] Côte, R.; Martel, Y.; Merle, F. Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302

[5] Combet, V. Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 1961-1993

[6] Duyckaerts, T.; Merle, F. Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., Volume 18 (2009) no. 6, pp. 1787-1840

[7] Duyckaerts, T.; Roudenko, S. Threshold solutions for the focusing 3D cubic Schrödinger equation, Rev. Mat. Iberoam., Volume 26 (2010), pp. 1-56

[8] Ei, S.I.; Ohta, T. Equation of motion for interacting pulses, Phys. Rev. E, Volume 50 (1994), pp. 4672-4678

[9] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, 2007

[10] Ginibre, J.; Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., Volume 32 (1979), pp. 1-32

[11] Gorshkov, K.A.; Ostrovsky, L.A. Interactions of solitons in non-integrable systems: direct perturbation method and applications, Physica D, Volume 3 (1981) no. 1–2, pp. 428-438

[12] Grillakis, M.; Shatah, J.; Strauss, W.A. Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., Volume 197 (1987), pp. 74-160

[13] Grillakis, M. Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system, Commun. Pure Appl. Math., Volume 43 (1990), pp. 299-333

[14] Herrero, M.A.; Velázquez, J.J.L. Flat blow-up in one-dimensional semilinear heat equations, Differ. Integral Equ., Volume 5 (1992), pp. 973-997

[15] Jendrej, J. Construction of two-bubble solutions for the energy-critical NLS, Anal. PDE, Volume 10 (2017) no. 8, pp. 1923-1959

[16] Karpman, V.I.; Solov'ev, V.V. A perturbational approach to the two-soliton system, Physica D, Volume 3 (1981) no. 1–2, pp. 487-502

[17] Krieger, J.; Martel, Y.; Raphaël, P. Two-soliton solutions to the three-dimensional gravitational Hartree equation, Commun. Pure Appl. Math., Volume 62 (2009) no. 11, pp. 1501-1550

[18] Nguyen, T.V. Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, Volume 30 (2017) no. 12, p. 4614

[19] Olmedilla, E. Multiple pole solutions of the nonlinear Schrödinger equation, Physica D, Volume 25 (1987), pp. 330-346

[20] Martel, Y.; Merle, F. Multi-solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006), pp. 849-864

[21] Martel, Y.; Merle, F. Description of two soliton collison for the quartic gKdV equation, Ann. of Math. (2), Volume 174 (2011), pp. 757-857

[22] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011) no. 3, pp. 563-648

[23] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006), pp. 405-466

[24] Martel, Y.; Raphaël, P. Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 701-737

[25] Merle, F. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys., Volume 129 (1990) no. 2, pp. 223-240

[26] Merle, F.; Raphaël, P. On universality of blow-up profile for L2 critical nonlinear Schrödinger equation, Invent. Math., Volume 156 (2004) no. 3, pp. 565-672

[27] Merle, F.; Raphaël, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2), Volume 161 (2005) no. 1, pp. 157-222

[28] Raphaël, P. Stability and Blow up for the Nonlinear Schrödinger Equation, Lecture Notes for the Clay Summer School on Evolution Equations, ETH, Zurich, Switzerland, 2008

[29] Raphaël, P.; Szeftel, J. Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011) no. 2, pp. 471-546

[30] Weinstein, M.I. Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491

[31] Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51-68

[32] Yang, J. Nonlinear Waves in Integrable and Non-integrable Systems, SIAM, Philadelphia, PA, 2010

[33] Zakharov, T.; Shabat, A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, Volume 34 (1972), pp. 62-69

Cité par Sources :