[À propos d'estimations pour des systèmes elliptiques à données L1]
In this paper, we give necessary and sufficient conditions on the compatibility of a kth-order homogeneous linear elliptic differential operator and differential constraint for solutions to
to satisfy the estimates
for and
when .
Dans cet article, nous donnons des conditions nécessaires et suffisantes sur la compatibilité d'un opérateur différentiel elliptique linéaire homogène d'ordre k et d'une contrainte différentielle pour que les solutions de
vérifient les inégalités
Accepté le :
Publié le :
Raita, Bogdan 1 ; Spector, Daniel 2, 3
@article{CRMATH_2019__357_11-12_851_0,
author = {Raita, Bogdan and Spector, Daniel},
title = {A note on estimates for elliptic systems with {\protect\emph{L}\protect\textsuperscript{1}} data},
journal = {Comptes Rendus. Math\'ematique},
pages = {851--857},
year = {2019},
publisher = {Elsevier},
volume = {357},
number = {11-12},
doi = {10.1016/j.crma.2019.11.007},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2019.11.007/}
}
TY - JOUR AU - Raita, Bogdan AU - Spector, Daniel TI - A note on estimates for elliptic systems with L1 data JO - Comptes Rendus. Mathématique PY - 2019 SP - 851 EP - 857 VL - 357 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2019.11.007/ DO - 10.1016/j.crma.2019.11.007 LA - en ID - CRMATH_2019__357_11-12_851_0 ER -
%0 Journal Article %A Raita, Bogdan %A Spector, Daniel %T A note on estimates for elliptic systems with L1 data %J Comptes Rendus. Mathématique %D 2019 %P 851-857 %V 357 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2019.11.007/ %R 10.1016/j.crma.2019.11.007 %G en %F CRMATH_2019__357_11-12_851_0
Raita, Bogdan; Spector, Daniel. A note on estimates for elliptic systems with L1 data. Comptes Rendus. Mathématique, Tome 357 (2019) no. 11-12, pp. 851-857. doi: 10.1016/j.crma.2019.11.007
[1] On the equation and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426
[2] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007) no. 2, pp. 277-315
[3] An elementary proof of an inequality of Maz'ya involving -vector fields, Contemp. Math., Volume 540 (2011), pp. 59-63
[4] Hardy–Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J. (2014), pp. 1419-1445
[5] Quasiconvexity, null Lagrangians, and Hardy space integrability under constant rank constraints, 2019 (arXiv preprint) | arXiv
[6] The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 2015
[7] Estimates for differential operators of vector analysis involving -norm, J. Eur. Math. Soc., Volume 12 (2009) no. 1, pp. 221-240
[8] Critical -differentiability of -maps and canceling operators, Trans. Amer. Math. Soc., Volume 372 (2019), pp. 7297-7326 | DOI
[9] Formulas to represent functions by their derivatives, Math. Ann., Volume 188 (1970) no. 1, pp. 53-77
[10] Estimates for -vector fields, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 3, pp. 181-186
[11] Function spaces between BMO and critical Sobolev spaces, J. Funct. Anal., Volume 236 (2006) no. 2, pp. 490-516
[12] Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 877-921
Cité par Sources :





