[Une remarque sur le résultat de Liao et Rams concernant la distribution des fractions continues dont le plus grand quotient partiel croît en ]
For a real , let be its continued fraction expansion. Denote by the maximum partial quotient up to n. For any real , let . For a set , let be its Hausdorff dimension. Recently, Lingmin Liao and Michal Rams showed that for any . In this paper, we show that for any following Liao and Rams' method, which supplements their result.
Étant donné un réel , soit son développement en fraction continue. Soit le plus grand quotient partiel jusqu'à n. Pour tout , soit . Pour un ensemble , soit sa dimension de Hausdorff. Récemment, Lingmin Liao et Michal Rams ont montré que pour tout . Dans cet article, nous montrons que pour tout en suivant la méthode de Liao et Rams, ce qui complète leur résultat.
Accepté le :
Publié le :
Ma, Liangang 1
@article{CRMATH_2017__355_7_734_0,
author = {Ma, Liangang},
title = {A remark on {Liao} and {Rams'} result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions},
journal = {Comptes Rendus. Math\'ematique},
pages = {734--737},
year = {2017},
publisher = {Elsevier},
volume = {355},
number = {7},
doi = {10.1016/j.crma.2017.05.012},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2017.05.012/}
}
TY - JOUR
AU - Ma, Liangang
TI - A remark on Liao and Rams' result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions
JO - Comptes Rendus. Mathématique
PY - 2017
SP - 734
EP - 737
VL - 355
IS - 7
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2017.05.012/
DO - 10.1016/j.crma.2017.05.012
LA - en
ID - CRMATH_2017__355_7_734_0
ER -
%0 Journal Article
%A Ma, Liangang
%T A remark on Liao and Rams' result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions
%J Comptes Rendus. Mathématique
%D 2017
%P 734-737
%V 355
%N 7
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2017.05.012/
%R 10.1016/j.crma.2017.05.012
%G en
%F CRMATH_2017__355_7_734_0
Ma, Liangang. A remark on Liao and Rams' result on the distribution of the leading partial quotient with growing speed $ {\mathrm{e}}^{{n}^{1/2}}$ in continued fractions. Comptes Rendus. Mathématique, Tome 355 (2017) no. 7, pp. 734-737. doi: 10.1016/j.crma.2017.05.012
[1] Hausdorff dimension of real numbers with bounded digit averages, Acta Arith., Volume 125 (2006), pp. 115-162
[2] On Kintchine exponents and Lyapunov exponents of continued fractions, Ergod. Theory Dyn. Syst., Volume 29 (2009), pp. 73-109
[3] A remark on the extreme value theory for continued fractions, 2016 | arXiv
[4] Multifractal analysis of Birkhoff averages for countable Markov maps, Ergod. Theory Dyn. Syst., Volume 35 (2015), pp. 2559-2586
[5] Subexponentially increasing sums of partial quotients in continued fraction expansions, Math. Proc. Camb. Philos. Soc., Volume 160 (2016) no. 3, pp. 401-412
[6] Explicit continued fractions with expected partial quotient growth, Proc. Amer. Math. Soc., Volume 130 (2002) no. 3, pp. 1603-1605
[7] A conjecture of Erdös on continued fractions, Acta Arith., Volume 28 (1975/76) no. 4, pp. 379-386
[8] The distribution of the largest digit in continued fraction expansions, Math. Proc. Camb. Philos. Soc., Volume 146 (2009) no. 1, pp. 207-212
[9] On the distribution for sums of partial quotients in continued fraction expansions, Nonlinearity, Volume 24 (2011) no. 4, pp. 1177-1187
[10] On sums of partial quotients in continued fraction expansions, Nonlinearity, Volume 21 (2008) no. 9, pp. 2113-2120
Cité par Sources :





