[Le plus grand commun diviseur de certains coefficients binomiaux]
Let m and n be positive integers. Let denote the binomial coefficient indexed by m and n, where n! is the factorial of n. For any prime p, let denote the largest nonnegative integer r such that divides n. In this paper, we use the p-adic method to show the following identity:
This extends greatly the identities obtained by Mendelsohn et al. in 1971 and by Albree in 1972, respectively.
Soient m et n deux entiers positifs. Soit le coefficient binomial. Pour chaque nombre premier p, soit le plus grand entier r tel que divise n. Dans cet article, nous montrons l'identité suivante :
Accepté le :
Publié le :
Hong, Siao 1
@article{CRMATH_2016__354_8_756_0,
author = {Hong, Siao},
title = {The greatest common divisor of certain binomial coefficients},
journal = {Comptes Rendus. Math\'ematique},
pages = {756--761},
year = {2016},
publisher = {Elsevier},
volume = {354},
number = {8},
doi = {10.1016/j.crma.2016.06.001},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2016.06.001/}
}
TY - JOUR AU - Hong, Siao TI - The greatest common divisor of certain binomial coefficients JO - Comptes Rendus. Mathématique PY - 2016 SP - 756 EP - 761 VL - 354 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2016.06.001/ DO - 10.1016/j.crma.2016.06.001 LA - en ID - CRMATH_2016__354_8_756_0 ER -
Hong, Siao. The greatest common divisor of certain binomial coefficients. Comptes Rendus. Mathématique, Tome 354 (2016) no. 8, pp. 756-761. doi: 10.1016/j.crma.2016.06.001
[1] The gcd of certain binomial coefficients, Math. Mag., Volume 45 (1972), pp. 259-261
[2] A Classical Introduction to Modern Number Theory, Grad. Texts Math., vol. 84, Springer-Verlag, New York, 1990
[3] The greatest common divisor of certain sets of binomial coefficients, J. Number Theory, Volume 21 (1985), pp. 101-119
[4] Students, divisors of binomial coefficients, Amer. Math. Mon., Volume 78 (1971), pp. 201-202
[5] Common factors of (), J. Indian Math. Club (Madras), Volume 1 (1909), pp. 39-43
[6] Secant varieties and successive minima, J. Algebraic Geom., Volume 13 (2004), pp. 323-341
Cité par Sources :





