[Espaces de fonctions sur les tores quantiques]
We study Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori. These spaces share many properties with their classical counterparts. The results announced include: Besov and Sobolev embedding theorems; Littlewood–Paley-type characterizations of Besov and Triebel–Lizorkin spaces; an explicit description of the K-functional of ; descriptions of completely bounded Fourier multipliers on these spaces.
On considère les espaces de Sobolev, Besov et Triebel–Lizorkin sur un tore quantique de d générateurs. Les principaux résultats comprennent : le plongement de Besov et Sobolev ; des caractérisations à la Littlewood–Paley pour les espaces de Besov et Triebel–Lizorkin ; une formule explicite de la K-fonctionnelle de ; l'indépendance en θ des multiplicateurs de Fourier complètement bornés sur ces espaces.
Accepté le :
Publié le :
Xiong, Xiao 1 ; Xu, Quanhua 1, 2 ; Yin, Zhi 2
@article{CRMATH_2015__353_8_729_0,
author = {Xiong, Xiao and Xu, Quanhua and Yin, Zhi},
title = {Function spaces on quantum tori},
journal = {Comptes Rendus. Math\'ematique},
pages = {729--734},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {8},
doi = {10.1016/j.crma.2015.06.002},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2015.06.002/}
}
TY - JOUR AU - Xiong, Xiao AU - Xu, Quanhua AU - Yin, Zhi TI - Function spaces on quantum tori JO - Comptes Rendus. Mathématique PY - 2015 SP - 729 EP - 734 VL - 353 IS - 8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.06.002/ DO - 10.1016/j.crma.2015.06.002 LA - en ID - CRMATH_2015__353_8_729_0 ER -
Xiong, Xiao; Xu, Quanhua; Yin, Zhi. Function spaces on quantum tori. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 729-734. doi: 10.1016/j.crma.2015.06.002
[1] Limiting embedding theorems for when and applications, J. Anal. Math., Volume 87 (2002), pp. 37-75
[2] Harmonic analysis on quantum tori, Commun. Math. Phys., Volume 322 (2013), pp. 755-805
[3] Interpolation of linear operators on Sobolev spaces, Ann. Math., Volume 109 (1979), pp. 583-599
[4] On the equivalence of the K-functional and moduli of continuity and some applications, Lect. Notes Math., Volume 571 (1976), pp. 119-140
[5] Noncommutative Riesz transforms – a probabilistic approach, Amer. J. Math., Volume 132 (2010), pp. 611-681
[6] On the Bourgain, Brézis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238
[7] Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group, Can. J. Math., Volume 63 (2011), pp. 1161-1187
[8] Noncommutative vector-valued spaces and completely p-summing maps, Astérisque, Volume 247 (1998) (vi+131 pp.)
[9] Noncommutative -spaces (Johnson, W.B.; Lindenstrauss, J., eds.), Handbook of the Geometry of Banach Spaces, vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517
[10] Sobolev theory for noncommutative tori, Rend. Semin. Mat. Univ. Padova, Volume 86 (1992), pp. 143-156
[11] A symplectic approach to Yang–Mills theory for noncommutative tori, Can. J. Math., Volume 44 (1992), pp. 368-387
[12] Theory of Function Spaces, II, Birkhäuser, Basel, 1992
[13] Hardy–Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260
[14] Lipschitz algebras and derivations of von Neumann algebras, J. Funct. Anal., Volume 139 (1996), pp. 261-300
[15] α-Lipschitz algebras on the noncommutative torus, J. Oper. Theory, Volume 39 (1998), pp. 123-138
[16] X. Xiong, Q. Xu, Z. Yin, Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori, Preprint, 2015.
Cité par Sources :





