Functional analysis
Function spaces on quantum tori
[Espaces de fonctions sur les tores quantiques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 729-734

We study Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori. These spaces share many properties with their classical counterparts. The results announced include: Besov and Sobolev embedding theorems; Littlewood–Paley-type characterizations of Besov and Triebel–Lizorkin spaces; an explicit description of the K-functional of (Lp(Tθd),Wpk(Tθd)); descriptions of completely bounded Fourier multipliers on these spaces.

On considère les espaces de Sobolev, Besov et Triebel–Lizorkin sur un tore quantique Tθd de d générateurs. Les principaux résultats comprennent : le plongement de Besov et Sobolev ; des caractérisations à la Littlewood–Paley pour les espaces de Besov et Triebel–Lizorkin ; une formule explicite de la K-fonctionnelle de (Lp(Tθd),Wpk(Tθd)) ; l'indépendance en θ des multiplicateurs de Fourier complètement bornés sur ces espaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.002

Xiong, Xiao 1 ; Xu, Quanhua 1, 2 ; Yin, Zhi 2

1 Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon cedex, France
2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
@article{CRMATH_2015__353_8_729_0,
     author = {Xiong, Xiao and Xu, Quanhua and Yin, Zhi},
     title = {Function spaces on quantum tori},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {729--734},
     year = {2015},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     doi = {10.1016/j.crma.2015.06.002},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2015.06.002/}
}
TY  - JOUR
AU  - Xiong, Xiao
AU  - Xu, Quanhua
AU  - Yin, Zhi
TI  - Function spaces on quantum tori
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 729
EP  - 734
VL  - 353
IS  - 8
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2015.06.002/
DO  - 10.1016/j.crma.2015.06.002
LA  - en
ID  - CRMATH_2015__353_8_729_0
ER  - 
%0 Journal Article
%A Xiong, Xiao
%A Xu, Quanhua
%A Yin, Zhi
%T Function spaces on quantum tori
%J Comptes Rendus. Mathématique
%D 2015
%P 729-734
%V 353
%N 8
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2015.06.002/
%R 10.1016/j.crma.2015.06.002
%G en
%F CRMATH_2015__353_8_729_0
Xiong, Xiao; Xu, Quanhua; Yin, Zhi. Function spaces on quantum tori. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 729-734. doi: 10.1016/j.crma.2015.06.002

[1] Bourgain, J.; Brézis, H.; Mironescu, P. Limiting embedding theorems for Ws,p when s1 and applications, J. Anal. Math., Volume 87 (2002), pp. 37-75

[2] Chen, Z.; Xu, Q.; Yin, Z. Harmonic analysis on quantum tori, Commun. Math. Phys., Volume 322 (2013), pp. 755-805

[3] DeVore, R.A.; Scherer, K. Interpolation of linear operators on Sobolev spaces, Ann. Math., Volume 109 (1979), pp. 583-599

[4] Johnen, H.; Scherer, K. On the equivalence of the K-functional and moduli of continuity and some applications, Lect. Notes Math., Volume 571 (1976), pp. 119-140

[5] Junge, M.; Mei, T. Noncommutative Riesz transforms – a probabilistic approach, Amer. J. Math., Volume 132 (2010), pp. 611-681

[6] Maz'ya, V.; Shaposhnikova, T. On the Bourgain, Brézis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238

[7] Neuwirth, S.; Ricard, É. Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group, Can. J. Math., Volume 63 (2011), pp. 1161-1187

[8] Pisier, G. Noncommutative vector-valued Lp spaces and completely p-summing maps, Astérisque, Volume 247 (1998) (vi+131 pp.)

[9] Pisier, G.; Xu, Q. Noncommutative Lp-spaces (Johnson, W.B.; Lindenstrauss, J., eds.), Handbook of the Geometry of Banach Spaces, vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517

[10] Spera, M. Sobolev theory for noncommutative tori, Rend. Semin. Mat. Univ. Padova, Volume 86 (1992), pp. 143-156

[11] Spera, M. A symplectic approach to Yang–Mills theory for noncommutative tori, Can. J. Math., Volume 44 (1992), pp. 368-387

[12] Triebel, H. Theory of Function Spaces, II, Birkhäuser, Basel, 1992

[13] Varopoulos, N.T. Hardy–Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260

[14] Weaver, N. Lipschitz algebras and derivations of von Neumann algebras, J. Funct. Anal., Volume 139 (1996), pp. 261-300

[15] Weaver, N. α-Lipschitz algebras on the noncommutative torus, J. Oper. Theory, Volume 39 (1998), pp. 123-138

[16] X. Xiong, Q. Xu, Z. Yin, Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori, Preprint, 2015.

Cité par Sources :