[De la dynamique des sphères dures aux équations de Stokes–Fourier : Une analyse de la limite de Boltzmann–Grad]
We derive the Stokes–Fourier equations in dimension 2 as the limiting dynamics of a system of N hard spheres of diameter ε when , , , using the linearized Boltzmann equation as an intermediate step. Our proof is based on the strategy of Lanford [6], and on the pruning procedure developed in [3] to improve the convergence time. The main novelty here is that uniform a priori estimates come from a bound on the initial data, the time propagation of which involves a fine symmetry argument and a systematic study of recollisions.
Les équations de Stokes–Fourier sont obtenues, en dimension 2, comme dynamique limite d'un système de N sphères dures de diamètre ε quand , , , en utilisant l'équation de Boltzmann linéarisée comme étape intermédiaire. Notre preuve est basée sur la stratégie de Lanford [6] et sur la procédure de troncature développée dans [3] pour améliorer le temps de convergence. La principale nouveauté ici est que les estimations a priori uniformes viennent d'une borne sur la donnée initiale, dont la propagation en temps repose sur un argument fin de symétrie et une étude systématique des recollisions.
Accepté le :
Publié le :
Bodineau, Thierry 1 ; Gallagher, Isabelle 2 ; Saint-Raymond, Laure 3
@article{CRMATH_2015__353_7_623_0,
author = {Bodineau, Thierry and Gallagher, Isabelle and Saint-Raymond, Laure},
title = {From hard spheres dynamics to the {Stokes{\textendash}Fourier} equations: {An} $ {L}^{2}$ analysis of the {Boltzmann{\textendash}Grad} limit},
journal = {Comptes Rendus. Math\'ematique},
pages = {623--627},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {7},
doi = {10.1016/j.crma.2015.04.013},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/}
}
TY - JOUR
AU - Bodineau, Thierry
AU - Gallagher, Isabelle
AU - Saint-Raymond, Laure
TI - From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit
JO - Comptes Rendus. Mathématique
PY - 2015
SP - 623
EP - 627
VL - 353
IS - 7
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/
DO - 10.1016/j.crma.2015.04.013
LA - en
ID - CRMATH_2015__353_7_623_0
ER -
%0 Journal Article
%A Bodineau, Thierry
%A Gallagher, Isabelle
%A Saint-Raymond, Laure
%T From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit
%J Comptes Rendus. Mathématique
%D 2015
%P 623-627
%V 353
%N 7
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2015.04.013/
%R 10.1016/j.crma.2015.04.013
%G en
%F CRMATH_2015__353_7_623_0
Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure. From hard spheres dynamics to the Stokes–Fourier equations: An $ {L}^{2}$ analysis of the Boltzmann–Grad limit. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 623-627. doi: 10.1016/j.crma.2015.04.013
[1] Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles, C. R. Acad. Sci. Paris, Ser. I, Volume 309 (1989) no. 11, pp. 727-732
[2] Equilibrium time correlation functions in the low density limit, J. Stat. Phys., Volume 22 (1980), pp. 237-257
[3] The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math. (2015), pp. 1-61 (in press) | DOI
[4] T. Bodineau, I. Gallagher, L. Saint-Raymond, From hard spheres dynamics to the Stokes–Fourier equations: an analysis of the Boltzmann–Grad limit, in preparation.
[5] From Newton to Boltzmann: The Case of Hard-Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, Switzerland, 2014
[6] Time evolution of large classical systems (Moser, J., ed.), Lecture Notes in Physics, vol. 38, Springer Verlag, 1975, pp. 1-111
Cité par Sources :





