Partial differential equations/Harmonic analysis
Fractional Laplacians, extension problems and Lie groups
[Laplaciens fractionnaires, problèmes d'extension et groupes de Lie]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 517-522

We generalize some results concerning the fractional powers of the Laplace operator to the setting of nilpotent Lie Groups and we study its relationship with the solutions to a partial differential equation in the spirit of the articles of Caffarelli & Silvestre [1] and Stinga & Torrea [7].

Nous généralisons aux groupes de Lie nilpotents les travaux de Caffarelli & Silvestre [1] et Stinga & Torrea [7] concernant la relation existant entre les puissances fractionnaires de l'opérateur laplacien et les solutions d'une équation aux dérivées partielles.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.007

Chamorro, Diego 1 ; Jarrín, Oscar 1

1 Laboratoire de mathématiques et modélisation d'Évry (LaMME), UMR 8071, Université d'Évry-Val-d'Essonne, 23, boulevard de France, 91037 Évry cedex, France
@article{CRMATH_2015__353_6_517_0,
     author = {Chamorro, Diego and Jarr{\'\i}n, Oscar},
     title = {Fractional {Laplacians,} extension problems and {Lie} groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {517--522},
     year = {2015},
     publisher = {Elsevier},
     volume = {353},
     number = {6},
     doi = {10.1016/j.crma.2015.04.007},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2015.04.007/}
}
TY  - JOUR
AU  - Chamorro, Diego
AU  - Jarrín, Oscar
TI  - Fractional Laplacians, extension problems and Lie groups
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 517
EP  - 522
VL  - 353
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2015.04.007/
DO  - 10.1016/j.crma.2015.04.007
LA  - en
ID  - CRMATH_2015__353_6_517_0
ER  - 
%0 Journal Article
%A Chamorro, Diego
%A Jarrín, Oscar
%T Fractional Laplacians, extension problems and Lie groups
%J Comptes Rendus. Mathématique
%D 2015
%P 517-522
%V 353
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2015.04.007/
%R 10.1016/j.crma.2015.04.007
%G en
%F CRMATH_2015__353_6_517_0
Chamorro, Diego; Jarrín, Oscar. Fractional Laplacians, extension problems and Lie groups. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 517-522. doi: 10.1016/j.crma.2015.04.007

[1] Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 1245-1260

[2] Ferrari, F.; Franchi, B. Hanarck inequality for fractional sub-Laplacians in Carnot groups, Math. Z., Volume 279 (2015), pp. 435-458

[3] Frank, R.; González, M.D.M.; Monticelli, D.D.; Tan, J. An extension problem for the CR fractional Laplacian, Adv. Math., Volume 270 (2015), pp. 97-137

[4] Furioli, G.; Melzi, C.; Veneruso, A. Littlewood–Paley decomposition and Besov spaces on Lie groups of polynomial growth, Math. Nachr., Volume 279 (2006) no. 9–10, pp. 1028-1040

[5] Galé, J.E.; Miana, P.J.; Stinga, P.R. Extension problems and fractional operators: semi-groups and wave equations | arXiv

[6] Kemmppainen, M.; Sjögren, S.; Torrea, J.L. Wave extension problem for the fractional Laplacian, J. Evol. Equ., Volume 2 (2014), pp. 343-368

[7] Stinga, P.; Torrea, J. Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., Volume 35 (2010) no. 11, pp. 2092-2122

[8] Varopoulos, N.T.; Saloff-Coste, L.; Coulhon, T. Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, vol. 100, 1992

Cité par Sources :