[Un lien continu entre les cas du disque et du demi-plan dans le théorème de Grace]
We obtain a continuous link between the disk and half-plane cases of Grace's theorem and new, non-circular zero domains that stay invariant under the Schur–Szegő convolution.
On obtient un lien continu entre les cas du disque et du demi-plan dans le théorème de Grace, ainsi que de nouveaux domaines de zéros non cerclés, qui sont invariants par la convolution de Schur–Szegő.
Accepté le :
Publié le :
Lamprecht, Martin 1
@article{CRMATH_2015__353_1_11_0,
author = {Lamprecht, Martin},
title = {A continuous link between the disk and half-plane cases of {Grace's} theorem},
journal = {Comptes Rendus. Math\'ematique},
pages = {11--15},
year = {2015},
publisher = {Elsevier},
volume = {353},
number = {1},
doi = {10.1016/j.crma.2014.10.017},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2014.10.017/}
}
TY - JOUR AU - Lamprecht, Martin TI - A continuous link between the disk and half-plane cases of Grace's theorem JO - Comptes Rendus. Mathématique PY - 2015 SP - 11 EP - 15 VL - 353 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.10.017/ DO - 10.1016/j.crma.2014.10.017 LA - en ID - CRMATH_2015__353_1_11_0 ER -
%0 Journal Article %A Lamprecht, Martin %T A continuous link between the disk and half-plane cases of Grace's theorem %J Comptes Rendus. Mathématique %D 2015 %P 11-15 %V 353 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.10.017/ %R 10.1016/j.crma.2014.10.017 %G en %F CRMATH_2015__353_1_11_0
Lamprecht, Martin. A continuous link between the disk and half-plane cases of Grace's theorem. Comptes Rendus. Mathématique, Tome 353 (2015) no. 1, pp. 11-15. doi: 10.1016/j.crma.2014.10.017
[1] Pólya–Schur master theorems for circular domains and their boundaries, Ann. Math. (2), Volume 170 (2009) no. 1, pp. 465-492
[2] The zeros of a polynomial, Proc. Camb. Philos. Soc., Volume 11 (1900–1902), pp. 352-357
[3] Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press Oxford University Press, Oxford, UK, 2002
[4] Universally prestarlike functions as convolution multipliers, Math. Z., Volume 263 (2009) no. 3, pp. 607-617
[5] New Pólya–Schoenberg type theorems, J. Math. Anal. Appl., Volume 363 (2010) no. 2, pp. 481-496
[6] Completely monotone sequences and universally prestarlike functions, Isr. J. Math., Volume 171 (2009) no. 1, pp. 285-304
[7] Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., Volume 13 (1922), pp. 28-55
Cité par Sources :





