[Faisceaux stables en tant quʼimages directes par le morphisme de Frobenius]
Let X be a smooth projective curve of genus over an algebraically closed field k of characteristic , and let be the relative Frobenius morphism. We show that a vector bundle E on is the direct image under F of some stable bundle on X if and only if the instability of is equal to .
Soient X une courbe projective lisse de genre définie sur un corps k algébriquement clos de caractéristique , et le morphisme de Frobenius relatif. On montre quʼun fibré vectoriel E sur est lʼimage directe sous F dʼun certain fibré stable sur X si et seulement si lʼinstabilité de est égale à .
Accepté le :
Publié le :
Liu, Congjun 1 ; Zhou, Mingshuo 1
@article{CRMATH_2013__351_9-10_381_0,
author = {Liu, Congjun and Zhou, Mingshuo},
title = {Stable bundles as {Frobenius} morphism direct image},
journal = {Comptes Rendus. Math\'ematique},
pages = {381--383},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {9-10},
doi = {10.1016/j.crma.2013.04.021},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.04.021/}
}
TY - JOUR AU - Liu, Congjun AU - Zhou, Mingshuo TI - Stable bundles as Frobenius morphism direct image JO - Comptes Rendus. Mathématique PY - 2013 SP - 381 EP - 383 VL - 351 IS - 9-10 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2013.04.021/ DO - 10.1016/j.crma.2013.04.021 LA - en ID - CRMATH_2013__351_9-10_381_0 ER -
%0 Journal Article %A Liu, Congjun %A Zhou, Mingshuo %T Stable bundles as Frobenius morphism direct image %J Comptes Rendus. Mathématique %D 2013 %P 381-383 %V 351 %N 9-10 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2013.04.021/ %R 10.1016/j.crma.2013.04.021 %G en %F CRMATH_2013__351_9-10_381_0
Liu, Congjun; Zhou, Mingshuo. Stable bundles as Frobenius morphism direct image. Comptes Rendus. Mathématique, Tome 351 (2013) no. 9-10, pp. 381-383. doi: 10.1016/j.crma.2013.04.021
[1] Stable vector bundles and the Frobenius morphism, Ann. Sci. Éc. Norm. Super. (4), Volume 6 (1973), pp. 95-101
[2] On vector bundles destabilized by Frobenius pull-back, Compos. Math., Volume 142 (2006) no. 3, pp. 616-630
[3] Semistability of Frobenius direct images over curves, Bull. Soc. Math. Fr., Volume 135 (2007), pp. 105-117
[4] Remarks on semistability of G-bundles in positive characteristic, Compos. Math., Volume 119 (1999), pp. 41-52
[5] Direct images of bundles under Frobenius morphism, Invent. Math., Volume 173 (2008), pp. 427-447
Cité par Sources :





