[Familles de courbes sur avec trois fibres singulières]
Suppose is a fibration of genus g with 3 singular fibers and two of them are semistable. We show that the Mordell–Weil group of f is finite, the surface S is rational and . We construct some examples to show that such fibrations exist for infinitely many g.
Soit une fibration de genre g avec trois fibres singulières, dont deux dʼentre elles sont semi-stables. Nous montrons que le groupe de Mordell–Weil de f est fini, que la surface S est rationnelle et que . Nous construisons également des exemples montrant quʼil existe de telles fibrations pour une infinité de g.
Accepté le :
Publié le :
Gong, Cheng 1 ; Lu, Xin 1 ; Tan, Sheng-Li 1
@article{CRMATH_2013__351_9-10_375_0,
author = {Gong, Cheng and Lu, Xin and Tan, Sheng-Li},
title = {Families of curves over $ {\mathbb{P}}^{1}$ with 3 singular fibers},
journal = {Comptes Rendus. Math\'ematique},
pages = {375--380},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {9-10},
doi = {10.1016/j.crma.2013.05.002},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.05.002/}
}
TY - JOUR
AU - Gong, Cheng
AU - Lu, Xin
AU - Tan, Sheng-Li
TI - Families of curves over $ {\mathbb{P}}^{1}$ with 3 singular fibers
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 375
EP - 380
VL - 351
IS - 9-10
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2013.05.002/
DO - 10.1016/j.crma.2013.05.002
LA - en
ID - CRMATH_2013__351_9-10_375_0
ER -
%0 Journal Article
%A Gong, Cheng
%A Lu, Xin
%A Tan, Sheng-Li
%T Families of curves over $ {\mathbb{P}}^{1}$ with 3 singular fibers
%J Comptes Rendus. Mathématique
%D 2013
%P 375-380
%V 351
%N 9-10
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.05.002/
%R 10.1016/j.crma.2013.05.002
%G en
%F CRMATH_2013__351_9-10_375_0
Gong, Cheng; Lu, Xin; Tan, Sheng-Li. Families of curves over $ {\mathbb{P}}^{1}$ with 3 singular fibers. Comptes Rendus. Mathématique, Tome 351 (2013) no. 9-10, pp. 375-380. doi: 10.1016/j.crma.2013.05.002
[1] Le nombre minimum de fibres singulières dʼun courbe stable sur , Séminaire sur les pinceaux de courbes de genre au moins deux (Szpiro, L., ed.) (Astérisque), Volume 86 (1981), pp. 97-108
[2] Les familles stables de courbes elliptiques sur admettant quatre fibres singuliéres, C. R. Acad. Sci. Paris, Ser. I, Volume 294 (1982) no. 19, pp. 657-660
[3] On Galois extensions of a maximal cyclotomic field, Math. USSR Izv., Volume 14 (1980) no. 2, pp. 247-256
[4] On Shimura curves in the Schottky locus, J. Algebraic Geom., Volume 19 (2010), pp. 371-397
[5] Geometric height inequalities, Math. Res. Lett., Volume 3 (1996) no. 5, pp. 693-702
[6] Families of hyperelliptic curves with maximal slopes, Sci. China Math., Volume 56 (2013) | DOI
[7] Inequalities between the Chern numbers of a singular fiber in a family of algebraic curves, Trans. Amer. Math. Soc., Volume 365 (2013), pp. 3373-3396
[8] A new inequality on the Hodge number of algebraic surfaces | arXiv
[9] On Beauvilleʼs conjecture and related topics, J. Math. Kyoto Univ., Volume 35 (1995) no. 2, pp. 275-298
[10] On family of curves over with small number of singular fibers, C. R. Acad. Sci. Paris, Ser. I, Volume 326 (1998) no. 4, pp. 459-463
[11] Some questions in algebraic geometry, June 1995 http://www.math.uu.nl/people/oort/ (Manuscript)
[12] Elliptische flächenüber mit drei Ausnahmefasern und die hypergeometrische Differentialgleichung, Universität Münster, Mathematisches Institut, Münster, West Germany, 1985
[13] Mordell–Weil lattices for higher genus fibration over a curve, New Trends in Algebraic Geometry, Cambridge Univ. Press, 1999, pp. 359-373
[14] On the invariants of base changes of pencils of curves, I, Manuscr. Math., Volume 84 (1994), pp. 225-244
[15] The minimal number of singular fibers of a semistable curve over , J. Algebraic Geom., Volume 4 (1995), pp. 591-596
[16] On the invariants of base changes of pencils of curves, II, Math. Z., Volume 222 (1996), pp. 655-676
[17] Chern numbers of a singular fiber, modular invariants and isotrivial families of curves, Acta Math. Vietnam, Volume 35 (2010) no. 1, pp. 159-172
[18] On complex surfaces with 5 or 6 semistable singular fibers over , Math. Z., Volume 249 (2005), pp. 427-438
[19] Arakelov inequalities and the uniformization of certain rigid Shimura varieties, J. Differ. Geom., Volume 77 (2007) no. 2, pp. 291-352
[20] On the stable reduction of pencils of curves, Math. Z., Volume 203 (1990), pp. 379-389
Cité par Sources :
☆ This work is supported by NSFC. The second author is partially supported by ECNU Reward for Excellent Doctors in Academics.





