[Reconstruction de sources dont le support est de petite taille, dans lʼéquation elliptique , à partir dʼune seule donnée de Cauchy]
This Note focuses on an algebraic reconstruction method allowing to solve an inverse source problem in the elliptic equation from a single Cauchy data. The source term F is a distributed function having compact support within a finite number of small subdomains.
Cette Note porte sur une méthode algébrique permettant de résoudre un problème inverse de sources dans lʼéquation elliptique à partir dʼune seule donnée de Cauchy. Le terme source F est une fonction distribuée à support compact contenu dans un ensemble fini de sous-domaines de petites tailles.
Accepté le :
Publié le :
Abdelaziz, Batoul 1 ; El Badia, Abdellatif 1 ; El Hajj, Ahmad 1
@article{CRMATH_2013__351_21-22_797_0,
author = {Abdelaziz, Batoul and El Badia, Abdellatif and El Hajj, Ahmad},
title = {Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single {Cauchy} data},
journal = {Comptes Rendus. Math\'ematique},
pages = {797--801},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {21-22},
doi = {10.1016/j.crma.2013.10.010},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2013.10.010/}
}
TY - JOUR
AU - Abdelaziz, Batoul
AU - El Badia, Abdellatif
AU - El Hajj, Ahmad
TI - Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single Cauchy data
JO - Comptes Rendus. Mathématique
PY - 2013
SP - 797
EP - 801
VL - 351
IS - 21-22
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2013.10.010/
DO - 10.1016/j.crma.2013.10.010
LA - en
ID - CRMATH_2013__351_21-22_797_0
ER -
%0 Journal Article
%A Abdelaziz, Batoul
%A El Badia, Abdellatif
%A El Hajj, Ahmad
%T Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single Cauchy data
%J Comptes Rendus. Mathématique
%D 2013
%P 797-801
%V 351
%N 21-22
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2013.10.010/
%R 10.1016/j.crma.2013.10.010
%G en
%F CRMATH_2013__351_21-22_797_0
Abdelaziz, Batoul; El Badia, Abdellatif; El Hajj, Ahmad. Reconstruction of extended sources with small supports in the elliptic equation $ \mathrm{\Delta }u+\mu u=F$ from a single Cauchy data. Comptes Rendus. Mathématique, Tome 351 (2013) no. 21-22, pp. 797-801. doi: 10.1016/j.crma.2013.10.010
[1] B. Abdelaziz, A. El Badia, A. El Hajj, Reconstruction method for solving some inverse source problems in the elliptic equation from a single Cauchy data, submitted for publication.
[2] Optical tomography in medical imaging, Inverse Probl., Volume 15 (1999) no. 2, p. R41-R93
[3] Identification of the combination of monopolar and dipolar sources for elliptic equations, Inverse Probl., Volume 25 (2009), p. 085006
[4] An inverse source problem in potential analysis, Inverse Probl., Volume 16 (2000), pp. 651-663
[5] On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-Posed Probl. (2002), pp. 585-599
[6] An inverse source problem for Helmholtzʼs equation from the Cauchy data with a single wave number, Inverse Probl., Volume 27 (2011), p. 105001
[7] Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Mod. Phys., Volume 65 (1993), pp. 413-497
[8] On rational approximation methods of inverse source problems, Inverse Probl. Imaging, Volume 5 (2011), pp. 185-202
[9] Reconstruction of extended sources for the Helmholtz equation, Inverse Probl., Volume 29 (2013), p. 035005
[10] Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng., Volume 39 (1992), pp. 541-557
[11] An algebraic method for identification of dipoles and quadrupoles, Inverse Probl., Volume 24 (2008), p. 025010
[12] Thermoacoustic tomography with variable sound speed, Inverse Probl., Volume 25 (2009), p. 075011
[13] Introduction to Matrix Computations, Academic Press, New York–London, 1973 (xiii+441 p)
[14] Uniqueness theorems in bioluminescence tomography, Med. Phys., Volume 8 (2004), pp. 2289-2299
Cité par Sources :





