Combinatorics
A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
[Une relation entre nombre de points entiers, volumes des faces et degré du discriminant des polytopes entiers non singuliers]
Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 229-233

We present a formula for the degree of the discriminant of a smooth projective toric variety associated to a lattice polytope P, in terms of the number of integral points in the interior of dilates of faces of dimension greater or equal than dimP2.

Nous donnons une formule pour le degré du discriminant dʼune variété torique projective non singulière associée à un polytope entier P, en terme du nombre de points entiers des intérieurs de dilatations de faces de dimension supérieure ou égale à dimP2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.02.001

Dickenstein, Alicia 1 ; Nill, Benjamin 2 ; Vergne, Michèle 3

1 Departamento de Matemática, FCEN, Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria, Pab I, (C1428EGA) Buenos Aires, Argentina
2 Case Western Reserve University, Department of Mathematics, 10900, Euclid Avenue, Cleveland, OH 44106, USA
3 Institut de mathématiques de Jussieu, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2012__350_5-6_229_0,
     author = {Dickenstein, Alicia and Nill, Benjamin and Vergne, Mich\`ele},
     title = {A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {229--233},
     year = {2012},
     publisher = {Elsevier},
     volume = {350},
     number = {5-6},
     doi = {10.1016/j.crma.2012.02.001},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2012.02.001/}
}
TY  - JOUR
AU  - Dickenstein, Alicia
AU  - Nill, Benjamin
AU  - Vergne, Michèle
TI  - A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 229
EP  - 233
VL  - 350
IS  - 5-6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2012.02.001/
DO  - 10.1016/j.crma.2012.02.001
LA  - en
ID  - CRMATH_2012__350_5-6_229_0
ER  - 
%0 Journal Article
%A Dickenstein, Alicia
%A Nill, Benjamin
%A Vergne, Michèle
%T A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes
%J Comptes Rendus. Mathématique
%D 2012
%P 229-233
%V 350
%N 5-6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2012.02.001/
%R 10.1016/j.crma.2012.02.001
%G en
%F CRMATH_2012__350_5-6_229_0
Dickenstein, Alicia; Nill, Benjamin; Vergne, Michèle. A relation between number of integral points, volumes of faces and degree of the discriminant of smooth lattice polytopes. Comptes Rendus. Mathématique, Tome 350 (2012) no. 5-6, pp. 229-233. doi: 10.1016/j.crma.2012.02.001

[1] Batyrev, V.V.; Nill, B. Multiples of lattice polytopes without interior lattice points, Mosc. Math. J., Volume 7 (2007), pp. 195-207

[2] Beck, M.; Robins, S. Computing the Continuous Discretely: Integer Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, 2007

[3] Brion, M. Points entiers dans les polyèdres convexes, Ann. Sci. Ecole Norm. Sup., Volume 21 (1988), pp. 653-663

[4] Di Rocco, S. Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc., Volume 93 (2006), pp. 85-104

[5] Dickenstein, A.; Nill, B. A simple combinatorial criterion for projective toric manifolds with dual defect, Math. Res. Lett., Volume 17 (2010) no. 3, pp. 435-448

[6] Ehrhart, E. Polynômes arithmétiques et méthode des polyèdres en combinatoire, International Series of Numerical Mathematics, vol. 35, Birkhäuser Verlag, 1977

[7] Gelʼfand, I.; Kapranov, M.; Zelevinsky, A. Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994

[8] Haase, C.; Nill, B.; Payne, S. Cayley decompositions of lattice polytopes and upper bounds for h-polynomials, J. Reine Angew. Math., Volume 637 (2009), pp. 207-216

[9] Hegedüs, G.; Kasprzyk, A.M. The boundary volume of a lattice polytope, 2010 (preprint) | arXiv

[10] Novelli, J.C.; Thibon, J.Y. Non-commutative symmetric functions and an amazing matrix, 2011 (preprint) | arXiv

[11] Stanley, R.P. A monotonicity property of h-vectors and h-vectors, Eur. J. Comb., Volume 14 (1993), pp. 251-258

[12] Ziegler, G. Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, 1995

Cité par Sources :