[Sur les fibrés vectoriels sur les courbes sur le corps ]
Let V be a vector bundle over an irreducible smooth projective curve defined over the field . For any integer , let be the Grassmann bundle parametrizing r-dimensional quotients of the fibers of V. Let L be a line bundle over such that for every irreducible closed curve . We prove that L is ample.
Soit V un fibré vectoriel sur une courbe projective lisse irréductible définie sur . Pour tout entier , soit le fibré en grassmanniennes paramétrisant les quotients de dimension r des fibrés de V. Soit L un fibré en droites sur tel que pour toute courbe fermée irréducible . On prouve alors que L est ample.
Accepté le :
Publié le :
Biswas, Indranil 1 ; Parameswaran, A.J. 1
@article{CRMATH_2012__350_3-4_213_0,
author = {Biswas, Indranil and Parameswaran, A.J.},
title = {On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {213--216},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {3-4},
doi = {10.1016/j.crma.2012.01.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2012.01.006/}
}
TY - JOUR
AU - Biswas, Indranil
AU - Parameswaran, A.J.
TI - On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$
JO - Comptes Rendus. Mathématique
PY - 2012
SP - 213
EP - 216
VL - 350
IS - 3-4
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2012.01.006/
DO - 10.1016/j.crma.2012.01.006
LA - en
ID - CRMATH_2012__350_3-4_213_0
ER -
%0 Journal Article
%A Biswas, Indranil
%A Parameswaran, A.J.
%T On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$
%J Comptes Rendus. Mathématique
%D 2012
%P 213-216
%V 350
%N 3-4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2012.01.006/
%R 10.1016/j.crma.2012.01.006
%G en
%F CRMATH_2012__350_3-4_213_0
Biswas, Indranil; Parameswaran, A.J. On vector bundles on curves over $ {\overline{\mathbb{F}}}_{p}$. Comptes Rendus. Mathématique, Tome 350 (2012) no. 3-4, pp. 213-216. doi: 10.1016/j.crma.2012.01.006
[1] On principal bundles over a projective variety defined over a finite field, J. K-Theory, Volume 4 (2009), pp. 209-221
[2] Comparison of fundamental group schemes of a projective variety and an ample hypersurface, J. Algebraic Geom., Volume 16 (2007), pp. 547-597
[3] On the ample vector bundles over curves in positive characteristic, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 355-358
[4] On a question of Sean Keel, J. Pure Appl. Algebra, Volume 215 (2011), pp. 2600-2602
[5] Ample vector bundles, Inst. Hautes Études Sci. Publ. Math., Volume 29 (1966), pp. 63-94
[6] Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, Berlin–Heidelberg–New York, 1970
[7] Polarized pushouts over finite fields, Comm. Algebra, Volume 31 (2003), pp. 3955-3982
[8] Nef line bundles which are not ample, Math. Z., Volume 219 (1995), pp. 235-244
[9] The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci., Volume 91 (1982), pp. 73-122
[10] Mumfordʼs example and a general construction, Proc. Indian Acad. Sci. Math. Sci., Volume 99 (1989), pp. 197-208
[11] Strongly semistable bundles on a curve over a finite field, Arch. Math., Volume 89 (2007), pp. 68-72
Cité par Sources :





