[Stabilité Hölderienne pour un problème inverse de sources ponctuelles]
In this Note we establish a Hölder stability estimate for an inverse pointwise source elliptic problem.
Nous établissons dans cette Note un résultat de stabilité Hölderienne dans un problème inverse de sources ponctuelles.
Accepté le :
Publié le :
El Badia, Abdellatif 1 ; El Hajj, Ahmad 1
@article{CRMATH_2012__350_23-24_1031_0,
author = {El Badia, Abdellatif and El Hajj, Ahmad},
title = {H\"older stability estimates for some inverse pointwise source problems},
journal = {Comptes Rendus. Math\'ematique},
pages = {1031--1035},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {23-24},
doi = {10.1016/j.crma.2012.11.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2012.11.006/}
}
TY - JOUR AU - El Badia, Abdellatif AU - El Hajj, Ahmad TI - Hölder stability estimates for some inverse pointwise source problems JO - Comptes Rendus. Mathématique PY - 2012 SP - 1031 EP - 1035 VL - 350 IS - 23-24 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2012.11.006/ DO - 10.1016/j.crma.2012.11.006 LA - en ID - CRMATH_2012__350_23-24_1031_0 ER -
%0 Journal Article %A El Badia, Abdellatif %A El Hajj, Ahmad %T Hölder stability estimates for some inverse pointwise source problems %J Comptes Rendus. Mathématique %D 2012 %P 1031-1035 %V 350 %N 23-24 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2012.11.006/ %R 10.1016/j.crma.2012.11.006 %G en %F CRMATH_2012__350_23-24_1031_0
El Badia, Abdellatif; El Hajj, Ahmad. Hölder stability estimates for some inverse pointwise source problems. Comptes Rendus. Mathématique, Tome 350 (2012) no. 23-24, pp. 1031-1035. doi: 10.1016/j.crma.2012.11.006
[1] The locations and strengths of point sources, Improperly Posed Boundary Values Problems, Res. Notes Math., vol. 1, Pitman, London, 1975, pp. 39-53
[2] An inverse source problem in potential analysis, Inverse Problems, Volume 16 (2000), pp. 651-663
[3] On an inverse source problem for the heat equation. Application to a pollution detection problem, J. Inverse Ill-Posed Probl. (2002), pp. 585-599
[4] Inverse source problem in an anisotropic medium by boundary measurements, Inverse Problems, Volume 21 (2005), pp. 1487-1506
[5] An inverse source problem for Helmholtzʼs equation from the Cauchy data with a single wave number, Inverse Problems, Volume 27 (2011), p. 105001
[6] O. Faugeras, F. Clment, R. Deriche, R. Kerivien, T. Papadoupolo, J. Roberts, T. Viville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst, D. Lingrand, The inverse EEG and MEG problems: The adjoint space approach I: The continuous case, Tech. Rep. 3673, INRIA, May 1999.
[7] Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain, Rev. Modern Phys., Volume 65 (1993), pp. 413-497
[8] Applied Mathematical Sciences, Springer-Verlag, New York, 1998
[9] Identification of simple poles via boundary measurements and application of EIT, Inverse Problems, Volume 20 (2004), pp. 1853-1863
[10] Factorization of even graphs, Quart. J. Math. Oxford Ser., Volume 20 (1949), pp. 95-104
[11] Locations and strengths of point sources: stability estimates, Inverse Problems, Volume 8 (1992), pp. 911-917
Cité par Sources :





