[Sur la propriété de Bernstein des équations différentielles partielles complexes dʼordre quatre]
For a smooth strictly plurisubharmonic function u on an open set and F a nondecreasing function on , we investigate the complex partial differential equations
Pour une fonction u strictement plurisouharmonique de classe sur un ouvert Ω de et F une fonction de classe croissante sur , on considère lʼéquation aux dérivées partielles complexes
Accepté le :
Publié le :
Asserda, Saïd 1
@article{CRMATH_2012__350_1-2_41_0,
author = {Asserda, Sa{\"\i}d},
title = {A {Note} on the {Bernstein} property of a fourth order complex partial differential equations},
journal = {Comptes Rendus. Math\'ematique},
pages = {41--44},
year = {2012},
publisher = {Elsevier},
volume = {350},
number = {1-2},
doi = {10.1016/j.crma.2011.11.016},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.11.016/}
}
TY - JOUR AU - Asserda, Saïd TI - A Note on the Bernstein property of a fourth order complex partial differential equations JO - Comptes Rendus. Mathématique PY - 2012 SP - 41 EP - 44 VL - 350 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.11.016/ DO - 10.1016/j.crma.2011.11.016 LA - en ID - CRMATH_2012__350_1-2_41_0 ER -
%0 Journal Article %A Asserda, Saïd %T A Note on the Bernstein property of a fourth order complex partial differential equations %J Comptes Rendus. Mathématique %D 2012 %P 41-44 %V 350 %N 1-2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.11.016/ %R 10.1016/j.crma.2011.11.016 %G en %F CRMATH_2012__350_1-2_41_0
Asserda, Saïd. A Note on the Bernstein property of a fourth order complex partial differential equations. Comptes Rendus. Mathématique, Tome 350 (2012) no. 1-2, pp. 41-44. doi: 10.1016/j.crma.2011.11.016
[1] A Bernstein property of a class of fourth order complex partial differential equations, Results Math., Volume 58 (2010), pp. 81-92
[2] Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math., vol. 699, 1979
Cité par Sources :





