[Sur la nondégénérescence de solutions de système de Toda]
We prove that the solution to the following Toda system
On montre que pour toute solution de système de Toda suivant , dans , , , le noyau de l'opérateur linéarisé associé est exactement de dimension huit, i.e., ce qu'on appelle la nondégénérescence.
Publié le :
Wei, Juncheng 1 ; Zhao, Chunyi 2 ; Zhou, Feng 2
@article{CRMATH_2011__349_3-4_185_0,
author = {Wei, Juncheng and Zhao, Chunyi and Zhou, Feng},
title = {On nondegeneracy of solutions to $ \mathit{SU}(3)$ {Toda} system},
journal = {Comptes Rendus. Math\'ematique},
pages = {185--190},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {3-4},
doi = {10.1016/j.crma.2010.11.025},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.11.025/}
}
TY - JOUR
AU - Wei, Juncheng
AU - Zhao, Chunyi
AU - Zhou, Feng
TI - On nondegeneracy of solutions to $ \mathit{SU}(3)$ Toda system
JO - Comptes Rendus. Mathématique
PY - 2011
SP - 185
EP - 190
VL - 349
IS - 3-4
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.11.025/
DO - 10.1016/j.crma.2010.11.025
LA - en
ID - CRMATH_2011__349_3-4_185_0
ER -
%0 Journal Article
%A Wei, Juncheng
%A Zhao, Chunyi
%A Zhou, Feng
%T On nondegeneracy of solutions to $ \mathit{SU}(3)$ Toda system
%J Comptes Rendus. Mathématique
%D 2011
%P 185-190
%V 349
%N 3-4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.11.025/
%R 10.1016/j.crma.2010.11.025
%G en
%F CRMATH_2011__349_3-4_185_0
Wei, Juncheng; Zhao, Chunyi; Zhou, Feng. On nondegeneracy of solutions to $ \mathit{SU}(3)$ Toda system. Comptes Rendus. Mathématique, Tome 349 (2011) no. 3-4, pp. 185-190. doi: 10.1016/j.crma.2010.11.025
[1] Sharp estimates for solutions of multi-bubbles in compact Riemann surface, Comm. Pure Appl. Math., Volume 55 (2002) no. 6, pp. 728-771
[2] Self-dual Chern–Simons Theories, Lecture Notes in Physics, vol. 36, Springer, Berlin, 1995
[3] Analytic aspects of the Toda system. I. A Moser–Trudinger inequality, Comm. Pure Appl. Math., Volume 54 (2001) no. 11, pp. 1289-1319
[4] Classification of solutions of a Toda system in , Int. Math. Res. Not., Volume 2002 (2002) no. 6, pp. 277-290
[5] Analytic aspects of Toda system. II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., Volume 59 (2006) no. 4, pp. 526-558
[6] Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Progress in Physics, vol. 15, Birkhäuser, 1992
[7] Solutions for Toda systems on Riemann surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 5 (2005) no. 4, pp. 703-728
[8] Some existence results for the Toda system on closed surfaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., Volume 18 (2007) no. 4, pp. 391-412
[9] Blow-up analysis for Toda system, J. Differential Equations, Volume 232 (2007) no. 2, pp. 419-440
[10] Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer, New York, 2001
Cité par Sources :





