[Fonctions analytiques sur et suites p-régulières]
Let p be a prime number. In this work we characterize all the analytic functions without roots in for which the sequence is p-regular. Then we apply our characterization to study quadratic linear recurrent sequences.
Soit p un nombre premier. Dans ce travail, nous caractérisons les fonctions analytiques sans zéros dans pour lesquelles la suite est p-régulière. Ensuite nous appliquons notre caractérisation pour étudier les suites récurrentes linéaires quadratiques.
Accepté le :
Publié le :
Shu, Zhang 1 ; Yao, Jia-Yan 1
@article{CRMATH_2011__349_17-18_947_0,
author = {Shu, Zhang and Yao, Jia-Yan},
title = {Analytic functions over $ {\mathbb{Z}}_{p}$ and \protect\emph{p}-regular sequences},
journal = {Comptes Rendus. Math\'ematique},
pages = {947--952},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {17-18},
doi = {10.1016/j.crma.2011.08.001},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.08.001/}
}
TY - JOUR
AU - Shu, Zhang
AU - Yao, Jia-Yan
TI - Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences
JO - Comptes Rendus. Mathématique
PY - 2011
SP - 947
EP - 952
VL - 349
IS - 17-18
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2011.08.001/
DO - 10.1016/j.crma.2011.08.001
LA - en
ID - CRMATH_2011__349_17-18_947_0
ER -
%0 Journal Article
%A Shu, Zhang
%A Yao, Jia-Yan
%T Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences
%J Comptes Rendus. Mathématique
%D 2011
%P 947-952
%V 349
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2011.08.001/
%R 10.1016/j.crma.2011.08.001
%G en
%F CRMATH_2011__349_17-18_947_0
Shu, Zhang; Yao, Jia-Yan. Analytic functions over $ {\mathbb{Z}}_{p}$ and p-regular sequences. Comptes Rendus. Mathématique, Tome 349 (2011) no. 17-18, pp. 947-952. doi: 10.1016/j.crma.2011.08.001
[1] The ring of k-regular sequence, Theoret. Comput. Sci., Volume 98 (1992), pp. 163-197
[2] The ring of k-regular sequence II, Theoret. Comput. Sci., Volume 307 (2003), pp. 3-29
[3] Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003
[4] Les Nombres p-adiques, Presses Universitaires de France, 1975
[5] p-adic valuations and k-regular sequences, Discrete Math., Volume 307 (2007), pp. 3070-3075
[6] p-regularity of the p-adic valuation of the Fibonacci sequence | arXiv
[7] Algebraic Number Theory, Dover, 1998
Cité par Sources :





