[Une inégalité de type Hardy pour les fonctions de ]
We consider functions , where is a smooth bounded domain. We prove that with
Nous considérons des fonctions , où est un domaine régulier borné. Nous prouvons que avec
Accepté le :
Publié le :
Castro, Hernán 1 ; Dávila, Juan 2 ; Wang, Hui 1, 3
@article{CRMATH_2011__349_13-14_765_0,
author = {Castro, Hern\'an and D\'avila, Juan and Wang, Hui},
title = {A {Hardy} type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions},
journal = {Comptes Rendus. Math\'ematique},
pages = {765--767},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {13-14},
doi = {10.1016/j.crma.2011.06.026},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.06.026/}
}
TY - JOUR
AU - Castro, Hernán
AU - Dávila, Juan
AU - Wang, Hui
TI - A Hardy type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions
JO - Comptes Rendus. Mathématique
PY - 2011
SP - 765
EP - 767
VL - 349
IS - 13-14
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2011.06.026/
DO - 10.1016/j.crma.2011.06.026
LA - en
ID - CRMATH_2011__349_13-14_765_0
ER -
%0 Journal Article
%A Castro, Hernán
%A Dávila, Juan
%A Wang, Hui
%T A Hardy type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions
%J Comptes Rendus. Mathématique
%D 2011
%P 765-767
%V 349
%N 13-14
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2011.06.026/
%R 10.1016/j.crma.2011.06.026
%G en
%F CRMATH_2011__349_13-14_765_0
Castro, Hernán; Dávila, Juan; Wang, Hui. A Hardy type inequality for $ {W}_{0}^{2,1}(\Omega )$ functions. Comptes Rendus. Mathématique, Tome 349 (2011) no. 13-14, pp. 765-767. doi: 10.1016/j.crma.2011.06.026
[1] Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003 MR 2424078 (2009e:46025)
[2] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 (MR 2759829)
[3] Hardyʼs inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 25 (1997) no. 1–2, pp. 217-237 (1998), Dedicated to Ennio De Giorgi. MR 1655516 (99m:46075)
[4] A Hardy type inequality for functions, Calc. Var. Partial Differential Equations, Volume 39 (2010) no. 3–4, pp. 525-531 (MR 2729310)
[5] Hernán Castro, Juan Dávila, Hui Wang, A Hardy type inequality for functions, in press.
[6] Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 Reprint of the 1998 edition. MR MR1814364 (2001k:35004)
[7] Removable singularities and boundary traces, J. Math. Pures Appl. (9), Volume 80 (2001) no. 9, pp. 879-900 MR 1865379 (2002j:35124)
Cité par Sources :





