[Dimension de Hausdorff du shift de Fibonacci multiplicatif]
We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined as the set of all reals in whose binary expansion satisfies for all , and show that it is smaller than the Minkowski dimension.
Nous calculons la dimension de Hausdorff du « shift de Fibonacci multiplicatif », cʼest-à-dire lʼensemble des nombres réels dans dont le développement en binaire satisfait pour tout . Nous montrons que la dimension de Hausdorff est plus petite que la dimension de Minkowski.
Accepté le :
Publié le :
Kenyon, Richard 1 ; Peres, Yuval 2 ; Solomyak, Boris 3
@article{CRMATH_2011__349_11-12_625_0,
author = {Kenyon, Richard and Peres, Yuval and Solomyak, Boris},
title = {Hausdorff dimension of the multiplicative golden mean shift},
journal = {Comptes Rendus. Math\'ematique},
pages = {625--628},
year = {2011},
publisher = {Elsevier},
volume = {349},
number = {11-12},
doi = {10.1016/j.crma.2011.05.009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2011.05.009/}
}
TY - JOUR AU - Kenyon, Richard AU - Peres, Yuval AU - Solomyak, Boris TI - Hausdorff dimension of the multiplicative golden mean shift JO - Comptes Rendus. Mathématique PY - 2011 SP - 625 EP - 628 VL - 349 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2011.05.009/ DO - 10.1016/j.crma.2011.05.009 LA - en ID - CRMATH_2011__349_11-12_625_0 ER -
%0 Journal Article %A Kenyon, Richard %A Peres, Yuval %A Solomyak, Boris %T Hausdorff dimension of the multiplicative golden mean shift %J Comptes Rendus. Mathématique %D 2011 %P 625-628 %V 349 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2011.05.009/ %R 10.1016/j.crma.2011.05.009 %G en %F CRMATH_2011__349_11-12_625_0
Kenyon, Richard; Peres, Yuval; Solomyak, Boris. Hausdorff dimension of the multiplicative golden mean shift. Comptes Rendus. Mathématique, Tome 349 (2011) no. 11-12, pp. 625-628. doi: 10.1016/j.crma.2011.05.009
[1] T. Bedford, Crinkly curves, Markov partitions and box dimension in self-similar sets, PhD thesis, University of Warwick, 1984.
[2] Ergodic Theory and Information, Wiley, New York, 1965
[3] Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997
[4] Level sets of multiple ergodic averages (preprint) | arXiv
[5] Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49
[6] Hausdorff dimension for fractals invariant under the multiplicative integers, 2011 (preprint) | arXiv
[7] The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., Volume 96 (1984), pp. 1-9
Cité par Sources :





