[Sur certaines inégalités de Bourgain, Brezis, Maz'ya et Shaposhnikova concernant les champs de vecteurs dans ]
Bourgain and Brezis established, for maps with zero average, the existence of a solution of (1) . Maz'ya proved that if, in addition, , then (1) can be solved in . Their arguments are quite different. We present an elementary property of fundamental solutions of the biharmonic operator in two dimensions. This property unifies, in two dimensions, the two approaches, and implies another (apparently unrelated) estimate of Maz'ya and Shaposhnikova. We discuss higher dimensional analogs of the above results.
Bourgain and Brezis ont montré que, si est de moyenne nulle, alors (1) a une solution . Maz'ya a prouvé que si, de plus, on a , alors il existe une solution de (1) dans . Les deux preuves sont distinctes. Dans cette note, nous présentons une propriété élémentaire des solutions fondamentales de l'opérateur biharmonique en dimension deux. Cette propriété unifie, en dimension deux, les approches de Bourgain–Brezis et Maz'ya, et implique une autre estimation de Maz'ya et Shaposhnikova (apparemment non liée aux précédentes). Nous discutons des variantes de ces résultats en dimension supérieure.
Publié le :
Mironescu, Petru 1
@article{CRMATH_2010__348_9-10_513_0,
author = {Mironescu, Petru},
title = {On some inequalities of {Bourgain,} {Brezis,} {Maz'ya,} and {Shaposhnikova} related to $ {L}^{1}$ vector fields},
journal = {Comptes Rendus. Math\'ematique},
pages = {513--515},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {9-10},
doi = {10.1016/j.crma.2010.03.019},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.03.019/}
}
TY - JOUR
AU - Mironescu, Petru
TI - On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 513
EP - 515
VL - 348
IS - 9-10
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.03.019/
DO - 10.1016/j.crma.2010.03.019
LA - en
ID - CRMATH_2010__348_9-10_513_0
ER -
%0 Journal Article
%A Mironescu, Petru
%T On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields
%J Comptes Rendus. Mathématique
%D 2010
%P 513-515
%V 348
%N 9-10
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.03.019/
%R 10.1016/j.crma.2010.03.019
%G en
%F CRMATH_2010__348_9-10_513_0
Mironescu, Petru. On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields. Comptes Rendus. Mathématique, Tome 348 (2010) no. 9-10, pp. 513-515. doi: 10.1016/j.crma.2010.03.019
[1] On the equation and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426
[2] New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543 (393–426)
[3] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007), pp. 277-315
[4] Bourgain–Brezis type inequality with explicit constants (De Carli, L.; Milman, M., eds.), Interpolation Theory and Applications, Contemp. Math., vol. 445, AMS, Providence, RI, 2007, pp. 247-252
[5] Estimates for differential operators of vector analysis involving -norm, J. Eur. Math. Soc., Volume 12 (2010), pp. 221-240
[6] A collection of sharp dilation invariant integral inequalities for differentiable functions (Maz'ya, V., ed.), Sobolev Spaces in Mathematics I, Int. Math. Ser. (N. Y.), vol. 8, Springer, New York, 2009, pp. 223-247
[7] Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971
Cité par Sources :





