[Une propriété du spectre des réels autres que les nombres de Pisot]
Let θ be a real number satisfying , m a positive rational integer and the set of polynomials with coefficients in , evaluated at θ. We prove that is everywhere dense when , where is the derivative set of . We also show that if , , then is discrete.
Soient θ un nombre réel satisfaisant , m un entier rationnel positif et l'ensemble des réels pour P décrivant les polynômes à coefficients dans . On montre que est partout dense lorsque 0 est un élément de l'ensemble dérivé de . On prouve également que si , , alors est discret.
Accepté le :
Publié le :
Zaïmi, Toufik 1
@article{CRMATH_2010__348_3-4_121_0,
author = {Za{\"\i}mi, Toufik},
title = {A property of the spectra of {non-Pisot} numbers},
journal = {Comptes Rendus. Math\'ematique},
pages = {121--124},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {3-4},
doi = {10.1016/j.crma.2010.01.016},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.01.016/}
}
TY - JOUR AU - Zaïmi, Toufik TI - A property of the spectra of non-Pisot numbers JO - Comptes Rendus. Mathématique PY - 2010 SP - 121 EP - 124 VL - 348 IS - 3-4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.01.016/ DO - 10.1016/j.crma.2010.01.016 LA - en ID - CRMATH_2010__348_3-4_121_0 ER -
Zaïmi, Toufik. A property of the spectra of non-Pisot numbers. Comptes Rendus. Mathématique, Tome 348 (2010) no. 3-4, pp. 121-124. doi: 10.1016/j.crma.2010.01.016
[1] Some computations on the spectra of Pisot and Salem numbers, Math. Comp., Volume 71 (2002), pp. 767-780
[2] On a property of Pisot numbers and related questions, Acta Math. Hungar., Volume 73 (1996), pp. 33-39
[3] Characterization of the unique expansion and related problems, Bull. Soc. Math. France, Volume 118 (1990), pp. 377-390
[4] On Pisot numbers, Ann. Univ. Sci. Budapest, Volume 39 (1996), pp. 95-99
[5] Developments in non-integer bases, Acta Math. Hungar., Volume 79 (1998), pp. 57-83
[6] Approximation by polynomials with bounded coefficients, J. Number Theory, Volume 127 (2007), pp. 103-117
[7] Une remarque sur le spectre des nombres de Pisot, C. R. Acad. Sci. Paris Ser. I, Volume 347 (2009), pp. 5-8
Cité par Sources :





