[Une extension de l'identité ]
In this Note we study the pointwise characterization of the distributional Jacobian of BnV maps. After recalling some basic notions, we will extend the well-known result of Müller to a more natural class of functions, using the divergence theorem to express the Jacobian as a boundary integral.
Dans cette Note on étudie la caractérisation ponctuelle du jacobien des applications BnV au sens des distributions. On étend un résultat bien connu de Müller à une classe plus naturelle de fonctions, en utilisant le théorème de la divergence pour écrire le jacobien comme une intégrale de contour.
Accepté le :
Publié le :
De Lellis, Camillo 1 ; Ghiraldin, Francesco 2
@article{CRMATH_2010__348_17-18_973_0,
author = {De Lellis, Camillo and Ghiraldin, Francesco},
title = {An extension of the identity $ \mathbf{Det}=\mathbf{det}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {973--976},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {17-18},
doi = {10.1016/j.crma.2010.07.019},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.07.019/}
}
TY - JOUR
AU - De Lellis, Camillo
AU - Ghiraldin, Francesco
TI - An extension of the identity $ \mathbf{Det}=\mathbf{det}$
JO - Comptes Rendus. Mathématique
PY - 2010
SP - 973
EP - 976
VL - 348
IS - 17-18
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2010.07.019/
DO - 10.1016/j.crma.2010.07.019
LA - en
ID - CRMATH_2010__348_17-18_973_0
ER -
%0 Journal Article
%A De Lellis, Camillo
%A Ghiraldin, Francesco
%T An extension of the identity $ \mathbf{Det}=\mathbf{det}$
%J Comptes Rendus. Mathématique
%D 2010
%P 973-976
%V 348
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.07.019/
%R 10.1016/j.crma.2010.07.019
%G en
%F CRMATH_2010__348_17-18_973_0
De Lellis, Camillo; Ghiraldin, Francesco. An extension of the identity $ \mathbf{Det}=\mathbf{det}$. Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 973-976. doi: 10.1016/j.crma.2010.07.019
[1] Variational convergence for functionals of Ginzburg–Landau type, Indiana Univ. Math. J., Volume 54 (2005) no. 5, pp. 1411-1472
[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1976/77) no. 4, pp. 337-403
[3] Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286
[4] Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 2 (2003) no. 3, pp. 521-549
[5] Some fine properties of currents and applications to distributional Jacobians, Proc. Roy. Soc. Edinburgh Sect. A, Volume 132 (2002) no. 4, pp. 815-842
[6] Some remarks on the distributional Jacobian, Nonlinear Anal., Volume 53 (2003) no. 7–8, pp. 1101-1114
[7] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992
[8] Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969
[9] Cartesian Currents in the Calculus of Variations. I, II, Ergeb. Math. Grenzgeb. (3), vols. 37, 38, Springer-Verlag, Berlin, 1998
[10] A local version of real Hardy spaces, Duke Math. J., Volume 46 (1979) no. 1, pp. 27-42
[11] D. Henao, Variational modelling of cavitation and fracture in nonlinear elasticity, PhD thesis, Oxford, 2009.
[12] Functions of bounded higher variation, Indiana Univ. Math. J., Volume 51 (2002) no. 3, pp. 645-677
[13] Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 197 (2010) no. 2, pp. 619-655
[14] . A remark on the distributional determinant, C. R. Acad. Sci. Paris Sér. I Math., Volume 311 (1990) no. 1, pp. 13-17
[15] An existence theory for nonlinear elasticity that allows for cavitation, Arch. Ration. Mech. Anal., Volume 131 (1995) no. 1, pp. 1-66
[16] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton, NJ, 1993
[17] Regularity properties of deformations with finite energy, Arch. Ration. Mech. Anal., Volume 100 (1988) no. 2, pp. 105-127
Cité par Sources :





