Partial Differential Equations
An extension of the identity Det=det
[Une extension de l'identité Det=det]
Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 973-976

In this Note we study the pointwise characterization of the distributional Jacobian of BnV maps. After recalling some basic notions, we will extend the well-known result of Müller to a more natural class of functions, using the divergence theorem to express the Jacobian as a boundary integral.

Dans cette Note on étudie la caractérisation ponctuelle du jacobien des applications BnV au sens des distributions. On étend un résultat bien connu de Müller à une classe plus naturelle de fonctions, en utilisant le théorème de la divergence pour écrire le jacobien comme une intégrale de contour.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.019

De Lellis, Camillo 1 ; Ghiraldin, Francesco 2

1 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2 Scuola Normale Superiore, P.zza dei Cavalieri, 7, 56126 Pisa, Italy
@article{CRMATH_2010__348_17-18_973_0,
     author = {De Lellis, Camillo and Ghiraldin, Francesco},
     title = {An extension of the identity $ \mathbf{Det}=\mathbf{det}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {973--976},
     year = {2010},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     doi = {10.1016/j.crma.2010.07.019},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.crma.2010.07.019/}
}
TY  - JOUR
AU  - De Lellis, Camillo
AU  - Ghiraldin, Francesco
TI  - An extension of the identity $ \mathbf{Det}=\mathbf{det}$
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 973
EP  - 976
VL  - 348
IS  - 17-18
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.crma.2010.07.019/
DO  - 10.1016/j.crma.2010.07.019
LA  - en
ID  - CRMATH_2010__348_17-18_973_0
ER  - 
%0 Journal Article
%A De Lellis, Camillo
%A Ghiraldin, Francesco
%T An extension of the identity $ \mathbf{Det}=\mathbf{det}$
%J Comptes Rendus. Mathématique
%D 2010
%P 973-976
%V 348
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2010.07.019/
%R 10.1016/j.crma.2010.07.019
%G en
%F CRMATH_2010__348_17-18_973_0
De Lellis, Camillo; Ghiraldin, Francesco. An extension of the identity $ \mathbf{Det}=\mathbf{det}$. Comptes Rendus. Mathématique, Tome 348 (2010) no. 17-18, pp. 973-976. doi: 10.1016/j.crma.2010.07.019

[1] Alberti, G.; Baldo, S.; Orlandi, G. Variational convergence for functionals of Ginzburg–Landau type, Indiana Univ. Math. J., Volume 54 (2005) no. 5, pp. 1411-1472

[2] Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1976/77) no. 4, pp. 337-403

[3] Coifman, R.; Lions, P.-L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286

[4] Conti, S.; De Lellis, C. Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 2 (2003) no. 3, pp. 521-549

[5] De Lellis, C. Some fine properties of currents and applications to distributional Jacobians, Proc. Roy. Soc. Edinburgh Sect. A, Volume 132 (2002) no. 4, pp. 815-842

[6] De Lellis, C. Some remarks on the distributional Jacobian, Nonlinear Anal., Volume 53 (2003) no. 7–8, pp. 1101-1114

[7] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992

[8] Federer, H. Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969

[9] Giaquinta, M.; Modica, G.; Souček, J. Cartesian Currents in the Calculus of Variations. I, II, Ergeb. Math. Grenzgeb. (3), vols. 37, 38, Springer-Verlag, Berlin, 1998

[10] Goldberg, D. A local version of real Hardy spaces, Duke Math. J., Volume 46 (1979) no. 1, pp. 27-42

[11] D. Henao, Variational modelling of cavitation and fracture in nonlinear elasticity, PhD thesis, Oxford, 2009.

[12] Jerrard, R.L.; Soner, H.M. Functions of bounded higher variation, Indiana Univ. Math. J., Volume 51 (2002) no. 3, pp. 645-677

[13] Mora-Corral, C.; Henao, D. Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 197 (2010) no. 2, pp. 619-655

[14] Müller, S. Det=det. A remark on the distributional determinant, C. R. Acad. Sci. Paris Sér. I Math., Volume 311 (1990) no. 1, pp. 13-17

[15] Müller, S.; Spector, S.J. An existence theory for nonlinear elasticity that allows for cavitation, Arch. Ration. Mech. Anal., Volume 131 (1995) no. 1, pp. 1-66

[16] Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton, NJ, 1993

[17] Šverák, V. Regularity properties of deformations with finite energy, Arch. Ration. Mech. Anal., Volume 100 (1988) no. 2, pp. 105-127

Cité par Sources :